首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The patch-clamp technique with two pipettes was used to record single delayed K+ channels (cell-attached electrode) and to control the potential and the composition of the intracellular compartment (whole-cell electrode). With 30 microM cAMP in the cell and physiological potassium concentrations inside and outside the patch, a channel carrying an outward current was characterized. Its open probability was very low and the channel was recorded in only 5% of patches under control conditions. Increasing intracellular cAMP increased the probability of finding a channel in a patch 10-fold. The channel had the characteristics expected of a delayed rectifier channel. The time-course of its ensemble average resembled the whole-cell current in the same cell. The current-voltage relationship exhibited inward rectification, with a slope conductance of 20 pS in the linear portion and a reversal potential close to EK. Both the open- and the closed-time distributions were described by the sum of two exponentials, suggesting a complicated gating scheme involving two closed states and two open states. The beta-adrenergic stimulation did not change the conductance of the channel, but increased its probability of opening.  相似文献   

3.
Single channel currents have been recorded from cell-attached patches of tumoral adrenocortical cells. Our experiments suggest the existence of three sets of potassium channels in the surface membrane of these cells. All channel types can be recorded in a given membrane patch but some patches have only one type of single channel currents. One channel type has a unitary conductance of about 103 pS. The other two channels have smaller conductances and opposite voltage dependence. In one case channels open on depolarization and have a single channel conductance of 31.6 pS. In the other case the probability of being in the open state increases on hyperpolarization and the single channel conductance is of 21 pS. These channels seem to be similar to the delayed and anomalous rectifying potassium channels seen in other preparations. The role of membrane ionic permeability in steroid release induced by ACTH is discussed.  相似文献   

4.
Single channel currents were recorded from cell-attached patches of endocrine cells of the adult male cricket corpora allata. Three distinct types of K+ channels were identified; a weak inward rectifier (Type 1), a strong inward rectifier (Type 2) and a weak outward rectifier (Type 3). The type 1 channel had a slope conductance of 191 +/- 9 pS (n = 4) at negative membrane potentials (Vm) and 101 +/- 6 pS (n = 6) at positive Vm. In addition, the channel showed fast open-closed kinetics at negative Vm and slow open-closed kinetics at positive Vm. The open probability (Po) of this channel was strongly voltage-dependent at positive Vm, but less voltage-dependent at negative Vm. The reversal potential was not modified significantly by the substitution of gluconate for external Cl- but was modified after N-methyl-D-glucamine (NMDG+) was substituted for external K+, according to the Nernst equation for a K+-selective channel. The type 2 channel had a slope conductance of 44 +/- 2 pS (n = 5) at negative Vm, but no detectable outward current was observed at positive Vm. This channel showed very slow open-closed kinetics at negative Vm and its Po was not voltage-dependent. The type 3 channel had a limit conductance of 55 +/- 12 pS (n = 3) at negative Vm and 88 +/- 10 pS (n = 3) at positive Vm. This channel showed slow open-closed kinetics at negative Vm and fast open-closed kinetics at positive Vm. The Po for the channel was voltage-dependent at positive Vm but was voltage-independent at negative Vm. These three types of K+ channels may be important for the control of the resting membrane potential, and may thus participate in the regulation of Ca2+ influx and juvenile hormone secretion in corpora allata cells.  相似文献   

5.
Ion channels in human endothelial cells.   总被引:4,自引:0,他引:4  
Ion channels were studied in human endothelial cells from umbilical cord by the patch clamp technique in the cell attached mode. Four different types of ion channels were recorded: i) potassium channel current that rectifies at positive potentials in symmetrical potassium solutions (inward rectifier); ii) low-conductance non-selective cation channel with a permeability ratio K:Na:Ca = 1:0.9:0.2; iii) high-conductance cation-selective channel that is about 100 times more permeable for calcium than for sodium or potassium; iv) high-conductance potassium channel with a permeability ratio K:Na = 1:0.05. The extrapolated reversal potential of the inwardly rectifying current was near to the potassium equilibrium potential. The slope conductance decreased from 27 pS in isotonic KCl solution to 7 pS with 5.4 mmol/l KCl and 140 mmol/l NaCl in the pipette but 140 mmol/l KCl in the bath. The low-conductance non-selective cation channel showed a single-channel conductance of 26 pS with 140 mmol/l Na outside, 28 pS with 140 mmol/l K outside, and rectified in inward direction in the presence of Ca (60 mmol/l Ca, 70 mmol/l Na, 2.7 mmol/l K in the pipette) at negative potentials. The current could be observed with either chloride or aspartate as anion. The high-conductance non-selective channel did not discriminate between Na and K. The single-channel conductance was about 50 pS. The extrapolated reversal potential was more positive than +40 mV (140 K or 140 Na with 5 Ca outside). Both the 26 and 50 pS channel showed a run-down, and they rapidly disappeared in excised patches. The high-conductance potassium channel with a single-channel conductance of 170 pS was observed only rarely. It reversed near the expected potassium equilibrium potential. The 26 pS channel could be stimulated with histamine and thrombin from outside in the cell-attached mode. Both the 26 pS as well as the 50 pS channel can mediate calcium flux into the endothelial cell.  相似文献   

6.
Summary We have used single electrode voltage clamp in the intact animal and whole-cell recording from dissociated cell bodies to investigate the properties of potassium conductances in large monopolar cells (LMCs) of the first optic ganglion of the blowfly Calliphora vicina. Two classes of voltage gated potassium conductances were found: a delayed rectifier current (Kd) with slow inactivation (inac = 1–3 sec), and an A current (Ka) showing both faster inactivation (inac = 21 ms) and also more rapid activation. The reversal potential of both currents is ca. -90 mV with 2 mM [Ko] and 140 mM [Ki], and follows the Nernst slope with increasing [Ko]. The voltage operating range of Ka is unusually negative, with the mid point of the steady-state inactivation curve (V50) at- 101 mV. V50 for Kd is - 84 mV. Although no inward currents were detected, for technical reasons their presence cannot be excluded.In inside-out patches from LMC soma membranes the single channels underlying the currents both have a conductance of ca. 20 pS in symmetrical 140 mM K solutions and channel densities may be as high as 10/m2. Less frequently, inside-out patches contained a large conductance (110 pS) calcium-activated potassium channel which existed almost exclusively in a rapidly flickering mode. Open probability increased with depolarization and Ca concentrations greater than 40 nM.In whole-cell recordings, dissociated LMC cell bodies fall into two classes with respect to their voltage sensitive currents: 37 % of cells only showed Kd; the remainder (63%) were dominated by Ka with a variable (0–30%) contribution from Kd. In the intact animal, intracellular recordings from LMCs, combined with dye-marking, indicate that cells expressing only Kd are type L3 cells, whilst L1 and L2 express predominantly Ka. Since L1 and L2 have resting potentials of ca. - 40 mV and maximum hyperpolarizations reaching -90 mV only transiently, inactivation of Ka is unlikely to be removed under most physiological conditions. In contrast, L3 cells have a more negative resting potential (–60 mV) and Kd should play a significant role in signal-shaping, in particular contributing to the falling phase of a prominent spike-like transient in response to dimming.Abbreviations Ka A current - Kd delayed rectifier - LMC large monopolar cell - L1-L3 classes thereof - TTX tetrodotoxin  相似文献   

7.
We studied the potassium channel in the basolateral membrane of the rat proximal convoluted tubule as affected by cyclosporine A. Proximal convoluted tubules were dissected from the rat kidney under a stereoscopic microscope, without a preliminary enzyme treatment. The standard configuration for single-channel tight seal patch-clamp technique was used to record channel currents. A small conductance, stretch-sensitive potassium channel could be observed spontaneously in most of the cell-attached patches as the gigaohm seal was formed. In the inside-out configuration, channel activity was diminished. The K(+) channel appeared to be an inward rectifier. The limiting inward slope conductance was 28.3+/-1.7 pS (Vp was between 40 mV and 80 mV, n=6) and the outward chord conductance was 5.6+/-0.3 pS (Vp was between -40 and -60 mV, n=5). The open dwell time constants of the potassium channel were 0.524 ms and 5.087 ms, while the closed dwell time constants were 1.029 ms and 16.500 ms. The opening probability of the channel decreased when the extracellular fluid was acidified. Cyclosporine A had no significant effect on the potassium channel of the proximal tubular cell in the basolateral membrane at concentrations of 10 and 50 microg/ml, while at 100 microg/ml, it decreased the opening probability.  相似文献   

8.
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6 m internal Ca2+ and blocked by 5–10mm external TEA.  相似文献   

9.
M Chua  W J Betz 《Biophysical journal》1991,59(6):1251-1260
The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system.  相似文献   

10.
Inward-rectifier K channel: using macroscopic voltage clamp and single- channel patch clamp techniques we have identified the K+ channel responsible for potassium recycling across basolateral membranes (BLM) of principal cells in intact epithelia isolated from frog skin. The spontaneously active K+ channel is an inward rectifier (Kir) and is the major component of macroscopic conductance of intact cells. The current- voltage relationship of BLM in intact cells of isolated epithelia, mounted in miniature Ussing chambers (bathed on apical and basolateral sides in normal amphibian Ringer solution), showed pronounced inward rectification which was K(+)-dependent and inhibited by Ba2+, H+, and quinidine. A 15-pS Kir channel was the only type of K(+)-selective channel found in BLM in cell-attached membrane patches bathed in physiological solutions. Although the channel behaves as an inward rectifier, it conducts outward current (K+ exit from the cell) with a very high open probability (Po = 0.74-1.0) at membrane potentials less negative than the Nernst potential for K+. The Kir channel was transformed to a pure inward rectifier (no outward current) in cell- attached membranes when the patch pipette contained 120 mM KCl Ringer solution (normal NaCl Ringer in bath). Inward rectification is caused by Mg2+ block of outward current and the single-channel current-voltage relation was linear when Mg2+ was removed from the cytosolic side. Whole-cell current-voltage relations of isolated principal cells were also inwardly rectified. Power density spectra of ensemble current noise could be fit by a single Lorentzian function, which displayed a K dependence indicative of spontaneously fluctuating Kir channels. Conclusions: under physiological ionic gradients, a 15-pS inward- rectifier K+ channel generates the resting BLM conductance in principal cells and recycles potassium in parallel with the Na+/K+ ATPase pump.  相似文献   

11.
Currents passing through individual potassium channels with anomalous (inward) rectification were recorded at the neuronal membrane ofPlanorbarius corneus using the patch clamp technique. These currents could be detected, whether in "right side out" or "inside out" configurations in the presence of 50 mM potassium ions or one of the potassium channel blockers: tetraethylammonium (TEA), barium, or cesium (2–20 mM) on the external side of the membrane. Inward currents were observed in individual channels at potentials more negative than level of potassium equilibrium potential (Ek); conductance of these measured 81±12 pS (n=11). At more positive potentials than Ek, conductance fell to zero. Potassium channels with anomalous (inward) rectification inPlanorbarius corneus resemble equivalent channels in other cells in their kinetics: time scale of the open state may be described by a single exponential function. This would imply that the ionic channel has a single open state. Time scale of the closed state was biexponential, thus indicating the possible existence of two kinetically different nonconducting states of the potassium channel with anomalous (inward) rectification at the neuronal membrane ofPlanorbarius corneus.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 31–38, January–February, 1989.  相似文献   

12.
Following the infection of insect ovarian cells (Sf9) with recombinant bearing the cDNA coding for the rat muscarinic acetylcholine (ACh) receptor subtype m3, ionic flux across the membrane in response to the application of ACh was examined electrophysiologically. We show that ACh activates potassium currents. The response is abolished when cells are treated with pertussis toxin. No ACh-induced currents are observed from uninfected cells or cells infected with virus which do not contain the cDNA coding for ACh receptors in its genome. The characteristics of single channel currents show time-dependent changes following the application of ACh. Initially, ACh activates brief channel currents with a conductance of about 5 pS. The conductance level of channels gradually increases in steps to 10 pS and then to 20 pS and 40 pS. At the same time, channel open probability also increases. Thereafter, additional channels appear, opening and closing independently of, or at times in synchrony with, the original channel.  相似文献   

13.
The single channel properties of recombinant gamma-aminobutyric acid type A (GABA(A))alphabetagamma receptors co-expressed with the trafficking protein GABARAP were investigated using membrane patches in the outside-out patch clamp configuration from transiently transfected L929 cells. In control cells expressing alphabetagamma receptors alone, GABA activated single channels whose main conductance was 30 picosiemens (pS) with a subconductance state of 20 pS, and increasing the GABA concentration did not alter their conductance. In contrast, when GABA(A) receptors were co-expressed with GABARAP, the GABA-activated single channels displayed multiple, high conductances (> or =40 pS), and GABA (> or =10 microM) was able to increase their conductance, up to a maximum of 60 pS. The mean open time of GABA-activated channels in control cells expressing alphabetagamma receptors alone was 2.3 +/- 0.1 ms for the main 30-pS channel and shorter for the subconductance state (20 pS, 0.8 +/- 0.1 ms). Similar values were measured for the 30- and 20-pS channels active in patches from cells co-expressing GABARAP. However higher conductance channels (> or =40 pS) remained open longer, irrespective of whether GABA or GABA plus diazepam activated them. Plotting mean open times against mean conductances revealed a linear relationship between these two parameters. Since high GABA concentrations increase both the maximum single channel conductance and mean open time of GABA(A) channels co-expressed with GABARAP, trafficking processes must influence ion channel properties. This suggests that the organization of extrasynaptic GABA(A) receptors may provide a range of distinct inhibitory currents in the brain and, further, provide differential drug responses.  相似文献   

14.
M2-cholinergic receptor activation by acetylcholine (ACh) is known to cause a negative inotropic and chronotropic action in atrial tissues. This effect is still controversial in ventricular tissues. The ACh-sensitive muscarinic K+ channel (I K(ACh)) activity was characterized in isolated feline atrial and ventricular myocytes using the patch-clamp technique. Bath application of ACh (1 m) caused shortening of action potential duration without prior stimulation with catecholamines in atrial and ventricular myocytes. Resting membrane potential was slightly hyperpolarized in both tissues. These effects of ACh were greater in atrium than in ventricle. ACh increased whole-cell membrane current in atrial and ventricular myocytes. The current-voltage (I-V) relationship of the ACh-induced current in ventricle exhibited inward-rectification whose slope conductance was smaller than that in atrium. In single channel recording from cell-attached patches, I K(ACh) activity was observed when ACh was induced in the pipette solution in both tissues. The channel exhibited a slope conductance of 47 ±1 pS (mean ± sd, n=14) in atrium and 47 ±2 pS (n= 10) in ventricle (not different statistically; ns). The open times were distributed according to a single exponential function with mean open lifetime of 2.0±0.3 msec (n= 14) in atrium and 1.9±0.3 msec (n=10) in ventricle (ns); these conductance and kinetic properties were similar between the two tissues. However, the relationship between the concentration of ACh and single channel activity showed a higher sensitivity to ACh in atrium (IC 50 =0.03 m) than in ventricle (IC 50 =0.15 m). In excised inside-out patches, ventricular I K(ACh) required higher concentrations of GTP to activate the channel compared to atrial channels. These results suggest a reduced I K(ACh) channel sensitivity to M2-cholinergic receptor-linked G protein (Gi) in ventricle compared to atrium in feline heart.  相似文献   

15.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

16.
The patch-clamp technique of cell-attached and inside-out configurations was used to study the single potassium channels in isolated guinea pig hepatocytes. The single potassium channels in isolated guinea pig hepatocytes were recorded at different K+ concentrations. A linear single-channel current-voltage relationship was obtained at the voltage range of -80 to -20 mV with slope conductance of 70 ± 6 pS (n = 10). Under symmetrical high K+ concentration of 148 mM in the cell-attached patch membrane, the I-V curve exhibited a mild inward rectification at potentials positive to +20 mV. The values of reversal potential was +5 ± 2 mV (n = 10). When the external potassium concentration ([K+]0) was decreased to 74 mM and 20 mM, the slope conductance was decreased to 48 ± 2 pS (n = 4) and 24 ± 3 pS (n = 3), respectively. The reversal potential was changed by 58 mV for a tenfold change in [K+]0, indicating that this channel was highly selective for K+. Open probabilities (P0) of the channel were 73-93% without apparent voltage dependence. The distributions of open time of the channels were fitted to two exponentials, while those of closed time were fitted to three exponentials, exhibiting no voltage dependence. The success rate of K+ channel activity to be recorded was 28% at room temperature, and there were no increases in the success rate nor in the channel opening probabilities at a temperature of 34-36°C. P0 in inside-out patches was not changed by application of 1 μM Ca2+ nor 1 mM Mg2+ to the internal side of patch membranes. It is concluded that a novel type of the K+ channels in guinea pig hepatocytes had different properties of slope conductance, channel kinetics, and sensitivity to [Ca2+]i, from those in other species. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

18.
Single channel recordings from cultured rat skeletal muscle have revealed a large conductance (230 pS) channel with a high selectivity for K+ over Na+. In excised patches of membrane, the probability of channel opening is sensitive to micromolar concentrations of calcium ions at the intracellular surface of the patch. Channel openings appear grouped together into bursts whose duration increases with Ca2+ and membrane depolarization. Statistical analysis of the individual open times during each burst showed that there are two distinct open states of similar conductance but dissimilar average lifetimes. These channels might contribute to a macroscopic calcium-activated potassium conductance in rat skeletal muscle and other preparations.  相似文献   

19.
The effects of quinidine on single inward rectifier K channels were investigated in cell-attached patches with 4.5 mM pipette potassium concentrations. Under these conditions, the single-channel slope conductance of the predominant conductance level of the inward rectifier channels was 3.9 +/- 0.3 pS at membrane potentials between -75 and -150 mV. Quinidine reversibly decreased the likelihood of channel opening to the main conductance level without reducing the single-channel conductance, and also reduced the probability of channel opening to subconducting levels. Quinidine had no significant effects on the channel open times, and the inhibition of channel opening was only slightly voltage dependent over the range of membrane potentials investigated. Quinidine induced a complete cessation of channel openings for brief periods (up to 2 min), suggesting that quinidine promoted occupancy of a state from which opening was less likely. Occasional long periods (up to an hour) with an absence of channel activity were also observed but quinidine did not appear to promote this behavior. The data suggest that quinidine decreases the ability of the channel to enter both main and subconducting states. By binding to a particular closed conformation of the channel, quinidine could reduce the likelihood of channel opening. The main features of these observations could be accounted for using the three-state kinetic model proposed by Sakmann, B. and G. Trube (1984b. J. Physiol. [Lond.]. 347:659-683.) with quinidine binding to the middle closed state.  相似文献   

20.
We are interested in the properties of the target site of cholinergic anti-nematodal drugs for therapeutic reasons. The target receptors are ligand-gated ion channels that have different subtypes, and each subtype may have a different pharmacology. In a contraction assay using the parasitic nematode Ascaris suum, our laboratory has identified several subtypes, including an N-subtype, preferentially activated by nicotine, and an L-subtype, preferentially activated by levamisole. Here we use patch-clamp recordings to test the hypothesis that the single-channel selectivities of nicotine and levamisole are different. Unitary currents evoked by nicotine in this preparation were characterised for the first time. In some patches, both nicotine and levamisole activated small- and large-conductance channels. In other patches, the agonists activated just one channel amplitude. Discriminant analysis allowed classification of the one-conductance patch channels into the small or large categories, based on sets defined by the two-conductance patch data. The small channels had a conductance of 26.1+/-1.5 pS, n=18 (mean+/-SEM); the large conductance channels had a conductance of 38.8+/-1.2 pS, n=23 (mean+/-SEM). Analysis of amplitude histograms of the two-conductance patches showed that nicotine preferentially activated the small-conductance channels and levamisole preferentially activated the large-conductance channels. Our observations suggest that the N-subtype receptor channel has a conductance of 26 pS channel and the L-subtype receptor channel has a conductance of 39 pS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号