首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
We have investigated the effect of disruption of the bgl1-(β-glucosidase l-encoding) gene of Trichoderma reesei on the formation of other β-glucosidase activities and on the induction of cellulases. To this end the bgl1 locus was disrupted by insertion of the Aspergillus nidulans amdS (acetamidase-encoding) gene. The bgl1-disrupted strain did not produce the 75kDa extracellular β-glucosidase on cellulose or lactose, but still formed β-glucosidase activity on glucose, cellobiose, xylan or β-1,3-glucan, suggesting that the enzyme(s) exhibiting this β-glucosidase activity is (are) not encoded by bgl1. The cellulose-inducer sophorose induced the bgl1-encoded β-glucosidase, whereas the remaining β-glucosidase activity was induced by methyl-β-D-glucoside. The bgl1-gene product was mainly secreted into the medium, whereas the other β-glucosidase activity was mainly associated with the cells. A bgl1-multicopy strain formed higher amounts of cellulases than the parent strain. Nonsaturating concentrations of sophorose efficiently induced cellobiohydrolase I formation in the bgl1-multicopy strain, but less efficiently in the bgl1-disrupted strain. The multicopy strain and the parent strain were comparably efficient at saturating sophorose concentrations. The β-glucosidase inhibitor nojirimycin strongly inhibited induction in all strains. These data suggest that the bgl1-encoded β-glucosidase is not identical to the plasma-membrane-bound, constitutive, methyl-β-glucoside inducible β-glucosidase, but represents an extracellular cellulose-induced enzyme. Both enzymes contribute to rapid induction of cellulases by modifying the inducer sophorose.  相似文献   

2.
Cellobiose is a major intermediate from cellulase hydrolysis of pretreated plant biomass. Engineering biocatalysts for direct use of cellobiose could eliminate the need for exogenous β-glucosidase. Additionally, rapid removal of cellobiose in a simultaneous saccharification and fermentation facilitates enzymatic hydrolysis as cellobiose is a potent inhibitor for cellulases. We report here improved cellobiose utilization by engineering Escherichia coli to assimilate the disaccharide both hydrolytically and phosphorolytically (shorter fermentation time). Additionally, we demonstrate that engineering intracellular cellobiose utilization circumvents catabolite repression allowing simultaneous fermentation of xylose and cellobiose. Using meso-2,3-butanediol as model product, we further demonstrate that the accelerated carbon metabolism led to improved product formation (higher titers and shorter fermentation times), illustrating the utility of the engineered biocatalysts in biorefinery applications.  相似文献   

3.
Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters.  相似文献   

4.
5.
The production of sugars by enzymatic hydrolysis of cellulose is a multistep process which includes conversion of the intermediate cellobiose to glucose by β-glucosidase. Aside from its role as an intermediate, cellobiose inhibits the endoglucanase components of typical cellulase enzyme systems. Because these enzyme systems often contain insufficient concentrations of β-glucosidase to prevent accumulation of inhibitory cellobiose, this research investigated the use of supplemental immobilized β-glucosidase to increase yield of glucose. Immobilized β-glucosidase from Aspergillus phoenicis was produced by sorption at controlled-pore alumina with about 90% activity retention. The product lost only about 10% of the original activity during an on-stream reaction period of 500 hr with cellobiose as substrate; maximum activity occurred near pH 3.5 and the apparent activation energy was about 11 kcal/mol. The immobilized β-glucosidase was used together with Trichoderma reesei cellulase to hydrolyze cellulosic materials, such as Solka Floc, corn stove and exploded wood. Increased yields of glucose and greater conversions of cellobiose of glucose were observed when the reaction systems contained supplemental immobilized β-glucosidase.  相似文献   

6.
The kinetics of the hydrolysis of microcrystalline cellulose (MC) by a Trichoderma reesei cellulase complex and by the individual endoglucanase (pI 4.4–5.2) and cellobiohydrolase (pI 4.0–4.2) has been studied. A flow chart for the enzymatic hydrolysis of the cellulose has been revealed, which formed a basis for a computer simulation of the kinetic regularities observed. As a result of it, the values of the catalytic rate constants for the individual stages of the enzymatic degradation of MC have been calculated. Then, the synergistic behaviour of endoglucanase and cellobiohydrolase in the hydrolysis of MC has been described both quantitatively and graphically. The relative efficiency of the individual stages for the MC hydrolysis in terms of glucose and cellobiose formation for cellulase complexes of various composition has been calculated. It was quantitatively shown that cellobiohydrolase plays the key role in the MC hydrolysis by T. reesei cellulase preparations, because it gives up to 80% glucose and up to 80–90% cellobiose in the presnce of endoglucanase which in turn plays a relatively minor role in a direct formation of both soluble products of the hydrolysis.  相似文献   

7.
Cellobiose and glucose were determined in a mixture of the two carbohydrates by methods involving the use of glucose oxidase and of β-glucosidase.Paper-partition chromatography is used as a confirmatory method in the identification of the hydrolysis products and in the detection of the various constituents.The cellulolytic organisms studied produce large amounts of the enzyme Cx, which diffuses into the medium. Only small amounts of β-glucosidase are found outside the cell. Cellobiose resulting from Cx activity can enter the cells as rapidly as can glucose.The role of cellobiose as a principal product in the hydrolysis of cellulose is confirmed. It is hypothesized that the principal final product of Cx activity is cellobiose, and that the presence of cellobiase in the medium is not a prerequisite to utilization of cellobiose by the organism. This is a correction of the hypothesis previously published stating that glucose appeared to be the final product of Cx activity.  相似文献   

8.
The disaccharide sophorose induces Trichoderma to increase a solube intracellular b-glucosidase that hydrolyses cellobiose, sophorose, and p-nitrophenyl-b-D-glucopyranoside. Simultaneously, it depresses the activity of a similar insoluble enzyme that is associated with the mycelium. Gel electrophoresis indicates that a single enzyme is responsible for all the soluble intracellular b-glucosidase activity. Cycloheximide severely inhibits sophorose induction of this enzyme indicating that the increase in activity normally obtained with sophorose is due to the de novo formation of the enzyme. The same sugars that promote the formation and release of cellulase by Trichoderma induce an increase in the soluble intracellular b-glucosidase. A function of the soluble intracellular enzyme appears to be the hydrolysis of cellobiose, which would otherwise accumulate during cellulose degradation, and thus to prevent cellobiose inhibition of cellulase.  相似文献   

9.
The inhibition of β-glucosidase in Trichoderma reesei C30 cellulase by D -glucose, its isomers, and derivatives was studied using cellobiose and ρ-nitrophenyl-β-glucoside (PNPG) as substrates for determining enzyme activity. The enzymatic hydrolysis of both substrates was inhibited competitively by glucose with approximate Ki values of 0.5mM and 8.7mM for cellobiose and PNPG as substrate, respectively. This inhibition by glucose was maximal at pH 4.8, and no inhibition was observed at pH 6.5 and above. The α anomer of glucose inhibited β-glucosidase to a greater extent than did the β form. Compared with D -glucose, L -glucose, D -glucose-6-phosphate, and D -glucose-1-phosphate inhibited the enzyme to a much lesser extent, unlike D -glucose-L -cysteine which was almost as inhibitory as glucose itself when cellobiose was used as substrate. Fructose (2?100mM) was found to be a poor inhibitor of the enzyme. It is suggested that high rates of cellobiose hydrolysis catalyzed by β-glucosidase may be prolonged by converting the reaction product glucose to fructose using a suitable preparation of glucose isomerase.  相似文献   

10.
Cellobiose is an intermediate in the enzymatic hydrolysis of cellulose to glucose and acts as an inhibitor for the cellulase enzymes. The conversion of cellobiose to glucose was studied with β-glucosidase adsorbed on Amberlite DP-1, a cation-exchange resin. The best overall pH for adsorption and reactor operation was near 5.0. The Km values increased with increasing enzyme loading due to competitive inhibition. The maximum practical enzyme loading was about 28 units/g resin. The immobilized enzyme was operated continously in both packed bed and fluidized bed reactors, giving half-lives between 200 and 375 h.  相似文献   

11.
This paper describes the characterization of an intracellular β-glucosidase enzyme BGLII (Cel1a) and its gene (bgl2) from the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). The expression pattern of bgl2 is similar to that of other cellulase genes known from this fungus, and the gene would appear to be under the control of carbon catabolite repression mediated by the cre1 gene. The BGLII protein was produced in Escherichia coli, and its enzymatic properties were analyzed. It was shown to be a specific β-glucosidase, having no β-galactosidase side activity. It hydrolyzed both cellotriose and cellotetraose. BGLII exhibited transglycosylation activity, producing mainly cellotriose from cellobiose and sophorose and cellobiose from glucose. Antibodies raised against BGLII showed the presence of the enzyme in T. reesei cell lysates but not in the culture supernatant. Activity measurements and Western blot analysis of T. reesei strains expressing bgl2 from a constitutive promoter further confirmed the intracellular localization of this β-glucosidase.  相似文献   

12.
Summary From cellulose and cellobiose the formation of sophorose, laminaribiose, and gentiobiose was catalyzed byTrichoderma reesei culture filtrate containing exo- and endoglucanase and -glucosidase activity and from cellobiose by a broken cell suspension fromT.reesei with -glucosidase activity. The results indicate that -glucosidase is the component responsible for transglycosylation reaction catalyzed byT.reesei cellulase enzyme complex.  相似文献   

13.
Strains of Trichoderma, particularly T. reesei and its mutants, are good sources of extracellular cellulase suitable for practical saccharification. They secrete a complete cellulase complex containing endo- and exo-glucanases plus β-glucosidase (cellobiase) which act syngergistically to degrade totally even highly resistant crystalline cellulose to soluble sugars. All strains investigated to date are inducible by cellulose, lactose, or sophorose, and all are repressible by glucose. Induction, synthesis and secretion of the β-glucanase enzymes appear to be closely associated. The composition and properties of the enzyme complex are similar regardless of the strain or inducing substrate although quantities of the enzyme secreted by the mutants are higher. Enzyme yields are proportional to initial cellulose concentration. Up to 15 filter paper cellulase units (20 mg of cellulase protein) per ml and productivities up to 80 cellulase units (130 mg cellulase protein) per litre per hour have been attained on 6% cellulose. The economics of glucose production are not yet competitive due to the low specific activity of cellulase (0.6 filter paper cellulase units/mg protein) and poor efficiency (about 15% of predicted sugar levels in 24 h hydrolyses of 10–25% substrate). As hydrolysis proceeds, the enzyme reaction slows due to increasing resistance of the residue, product inhibition, and enzyme inactivation. These problems are being attacked by use of pretreatments to increase the quantity of amorphous cellulose, addition of β-glucosidase to reduce cellobiose inhibition, and studies of means to overcome instability and increase efficiency of the cellulases. Indications are that carbon compounds derived from enzymatic hydrolysis of cellulose will be used as fermentation and chemical feedstocks as soon as the process economics are favourable for such application.  相似文献   

14.
15.
Summary Poplar wood chips were pretreated by steam explosion and the cellulosic residue was hydrolysed with the cellulase complex ofTrichoderma reesei CL 847. The hydrolysate contains the (1–6) disaccharide gentiobiose. Incubation of cellobiose with the same cellulase system led to the synthesis of Glc-Glc dimers which were characterized and quantified as gentiobiose, cellobiose, laminarabiose, sophorose and trehalose, whose origin was clarified by using carbon-13 glucose selectively labelled on C1. We propose a mechanism to explain these reversion reactions.  相似文献   

16.
17.
Regulation of the formation and secretion of two cellulase components from Trichoderma reesei QM 9414, cellobiohydrolases I and II (CBH I and CBH II, respectively), by the carbon source was investigated. With monoclonal antibodies against CBH I and CBH II it was found that during cultivation on carbon sources which enable fast growth (glucose, glycerol, and fructose), no formation of CBH I occurred, whereas low levels of CBH II were formed. Lactose and cellulose, which allow comparably slower growth, promoted the formation of both CBH I and CBH II. However, noncarbohydrate carbon sources as citrate or acetate, which also enable only slow growth, did not promote the formation of CBH I or CBH II. The addition of glucose or glycerol to lactose- or cellulose-pregrown mycelia, on the other hand, only partially reduced the formation of CBH I. This reduction was also achieved by several other metabolizable and nonmetabolizable carbon compounds, e.g., fructose, galactose, β-methylglucoside, 2-deoxyglucose, and rhamnose, as well as by transfer to no carbon source at all. This result indicates that the control of CBH I synthesis by the carbon source is due to induction and not to repression. The use of cycloheximide and 5-fluorouracil as inhibitors at and before translation, respectively, revealed a half-life for CBH I mRNA of at least several hours, which may, at least in part, account for the prolonged synthesis of some CBH I under these conditions. Northern (RNA) hybridization with full copies of cbh1 and cbh2 genes indicated that the control of CBH I and CBH II biosyntheses by the carbon source operates mainly at the pretranslational level. We conclude that the low rate of cellulase synthesis on glucose and some other carbon sources is due to the lack of an inducer and not to carbon source repression.  相似文献   

18.
Induction of synthesis of cellulolytic enzymes in Trichoderma reesei QM 9414 by cellobiono-1,5-lactone (CBL) has been investigated in a replacement system lacking additional carbon source. CBL induced cellulase secretion optimally at pH 5 and a concentration of 70 g/ml. Higher concentrations lead to lower induction. De novo induction of cellulases was proven by the inhibitory effect of cycloheximide addition. Induction by CBL was shown to act synergistically on induction by sophorose, as it decreased the concentration of sophorose required for maximal induction. Maximal endo--1,4-glucanase activities induced by either sophorose or CBL were comparable. The CBL-induced cellulase system contained all the major cellulolytic enzymes of T. reesei, i.e. cellobiohydrolase I and II, and endoglucanase I, as shown by SDS-PAGE, Western blotting and detection with specific mono- and polyclonal antibodies. No differences were seen in the types of individual enzymes formed upon induction by either sophorose or CBL. No other hydrolytic enzymes appear to be induced by CBL (i.e. amylase, laminarinase, xylanase).Abbreviations SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium-dodecylsulfate - CBL cellobiono-1,5-lacton - CBH cellobiohydrolase - EG endoglucanase - IgG immunoglobulin G  相似文献   

19.
20.
In an attempt to clarify the function of lactose in cellulase induction, experiments were carried out on cellulase formation by lactose along with other sugars in a resting cell system of Trichoderma reesei PC-3-7, a hypercellulase-producing mutant. Although lactose alone induces little cellulase under the conditions used, a synergistic effect on cellulase formation was observed following the respective addition of sophorose, cellobiose or galactose to lactose. The lactose consumption was more rapid when these sugars were added than in their absence. Furthermore, following lactose addition 10 h after the beginning of cultivation in the presence of cellobiose, cellulase formation was initiated with only a little lag, and lactose consumption started immediately, being complete in 14 h. \-Galactosidase induction experiments suggested that the rapid consumption of lactose is possibly not dependent on lactose degradation by the enzyme. From these results, it is suggested that lactose may function as an inducer for cellulase formation if it is taken up in the mycelium of T. reesei PC-3-7, and that sophorose, cellobiose or galactose may induce a putative lactose permease. *** DIRECT SUPPORT *** AG903066 00005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号