首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human monocyte/macrophage-like cell line U937 is a cholesterol auxotroph. Incubation of these cells in the growth medium in which delipidated fetal calf serum has been substituted for fetal calf serum depletes cellular cholesterol and inhibits growth. The cholesterol requirement of these cells for growth can be satisfied by human low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL), but not by high-density lipoprotein (HDL). U937 cells can bind and degrade LDL via a high-affinity site and this recognition is altered by acetylation of LDL. This indicates that these cells express relatively high LDL receptor activity and low levels of the acetyl-LDL receptor. The cells were used to study the role of cholesterol in lectin-mediated and fluid-phase endocytosis. Growth of the cells in the medium containing delipidated fetal calf serum results in impairment of both concanavalin A-mediated endocytosis of horseradish peroxidase and concanavalin A-independent endocytosis of Lucifer Yellow. Supplementation of the medium with cholesterol prevents cellular cholesterol depletion, supports growth and stimulates Lucifer Yellow endocytosis but fails to restore horseradish peroxidase endocytosis. However, if the cells are incubated in the presence of no less than 40 μg LDL protein/ml to maintain normal cell cholesterol levels, concanavalin A-mediated endocytosis of horseradish peroxidase is activated. The effect of LDL is specific since neither VLDL nor HDL3 at the same protein concentration activates horseradish peroxidase uptake by the cells. Furthermore, the activation of endocytosis by LDL is not inhibited by the inclusion of heparin or acetylation of the LDL indicating that binding of LDL to the LDL receptor is not required for these effects. The mediation of activation of horseradish peroxidase endocytosis by the lectin is presumed to involve binding of LDL to concanavalin A associated with the cell surface which in turn stimulates horseradish peroxidase binding and uptake by adsorptive endocytosis. The rate of fluid endocytosis and endosome formation seems to depend on cellular cholesterol content presumably because cholesterol is involved in maintaining the appropriate plasma membrane structure and fluidity.  相似文献   

2.
Cysteine has been implicated in myocardial protection, although this is controversial and constrained by limited knowledge about the effects of cysteine at the cellular level. This study tested the hypothesis that a physiologically relevant dose of l-cysteine could be safely loaded into isolated cardiomyocytes leading to improved protection against oxidative stress. Freshly isolated adult rat ventricular cardiomyocytes were incubated for 2 h at 37°C with (cysteine incubated) or without (control) 0.5 mM cysteine prior to washing and suspension in fresh cysteine-free media. Cysteine incubated cells had higher intracellular cysteine levels compared to controls (9.6 ± 0.78 vs. 6.5 ± 0.65 nmol/mg protein, P < 0.02, n = 6 ± SE). Cell homeostasis indicators were similar in the two groups. Cysteine incubated cells had significantly higher glutathione peroxidase (GPx) activity (1.11 ± 0.23 vs. 0.54 ± 0.1 U/mg protein, P < 0.05, n = 5 ± SE) and significantly greater expression of GPx-1 (5.01 ± 0.48 vs. 3.01 ± 0.25 OD units/mm2, P < 0.05, n = 4 ± SE) compared to controls. Upon exposure to H2O2, cysteine incubated cells generated fewer reactive oxygen species and took longer to show contractile changes and undergo hypercontracture. However, when cells were exposed to H2O2 in the presence of 0.05 mM of the GPx inhibitor mercaptosuccinic acid, this increased the control cells’ susceptibility to H2O2 and completely abolished the cysteine mediated protection. These results suggest a new role for cysteine in myocardial protection involving stimulation of glutathione peroxidase.  相似文献   

3.
Soils and ground water in nature are dominated by chloride and sulphate salts. There have been several studies concerning NaCl salinity, however, little is known about the Na2SO4 one. The effects on antioxidative activities of chloride or sodium sulphate in terms of the same Na+ equivalents (25 mM Na2SO4 and 50 mM NaCl) were studied on 30 day-old plants of Ocimum basilicum L., variety Genovese subjected to 15 and 30 days of treatment. Growth, thiobarbituric acid reactive substances (TBARS), relative ion leakage ratio (RLR), hydrogen peroxide (H2O2), ascorbate and glutathione contents as well as the activities of ascorbate peroxidase (APX, EC 1.11.1.11); glutathione reductase (GR, EC 1.6.4.2) and peroxidases (POD, EC 1.11.1.7) were determined. In leaves, growth was more depressed by 25 mM Na2SO4 than 50 mM NaCl. The higher sensitivity of basil to Na2SO4 was associated with an enhanced accumulation of H2O2, an inhibition of APX, GR and POD activities (with the exception of POD under the 30-day-treatment) and a lower regeneration of reduced ascorbate (AsA) and reduced glutathione (GSH). However, the changes in the antioxidant metabolism were enough to limit oxidative damage, explaining the fact that RLR and TBARS levels were unchanged under both Na2SO4 and NaCl treatment. Moreover, for both salts the 30-day-treatment reduced H2O2 accumulation, unchanged RLR and TBARS levels, and enhanced the levels of antioxidants and antioxidative enzymes, thus achieving an adaptation mechanism against reactive oxygen species.  相似文献   

4.
Antioxidative responses were investigated in leaves of wheat (Triticum aestivum L.) grown at varying S levels ranging from deficiency to excess (1, 2, 4, 6 and 8 mM S). Optimum yield was observed in plants supplied with 4 mM S. Wheat responded to S deficiency and excess supply by decreasing growth of root and shoot. Chlorosis in young leaves was observed after 15 days of deficient S supply. The biomass and concentration of photoassimilatory pigments decreased in plants grown at 1, 2, 6 and 8 mM S supply. The concentration of thiobarbituric acid reactive substances (TBARS), cysteine, nonprotein thiol and hydrogen peroxide (H2O2) increased in plants grown under S stress. Accumulation of TBARS and H2O2 in leaves indicated oxidative damage in S-deficient and S-excess plants. Deficient and excess levels of S showed an increase in the activities of antioxidative enzymes superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2).  相似文献   

5.
The aim of the study was to relate the effects of deficiency and excess of Mn with the generation of reactive oxygen species (ROS) and altered cellular redox environment in mulberry (Morus alba L.) cv. Kanva-2 plants. Mn deficiency symptom appeared as mild interveinal chlorosis in middle leaves. Mn-excess did not produce any specific symptom. Leaf water potential (Ψ) was increased in Mn-deficient and Mn-excess mulberry plants. Mn-deficient leaves contained less Mn, less chloroplastic pigments and high tissue Fe, Zn and Cu concentrations. Starch content was increased with increasing Mn supply. While reducing sugar content increased in Mn-deficient and Mn-excess plants as well, non-reducing sugars remained unaffected in Mn-deficient plants and decreased in Mn-excess plants. Moreover, study of antioxidative responses, oxidative stress (H2O2 and lipid peroxidation) and cellular redox environment [dehydroascorbate (DHA)/ascorbic acid (AsA) ratio] in Mn-stressed mulberry plants was also undertaken. Both hydrogen peroxide and lipid peroxidation were enhanced in the leaves of Mn-deficient plants. Increased H2O2 concentration in Mn-excess leaves did not induce oxidative damage as indicated by no change in lipid peroxidation. The ratio of the redox couple (DHA/AsA) was increased both in Mn-deficient or Mn-excess plants. The activities of superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) increased in Mn-deficient plants. The activity of ascorbate peroxidase (EC 1.11.1.11) increased with increasing Mn supply. The results suggest that deficiency or excess of Mn induces oxidative stress through enhanced ROS generation and disturbed redox couple in mulberry plants.  相似文献   

6.
Hydrogen peroxide (H2O2), a major reactive oxygen species, has been shown to be a critical mediator of apoptosis induced by several toxic metals such as cadmium. In this study, we used the freshwater crab Sinopotamon henanense to study whether H2O2 can cause apoptosis in gill cells. The crabs were incubated in H2O2 and the DNA fragmentation, ultrastructural changes and caspase-3/8/9 activities were measured. The results showed that in freshwater crab, H2O2 was found to induce apoptosis, as confirmed by DNA fragmentation analysis and morphological observation of transmission electron microscopy. This apoptosis occurs in a concentration-dependent pattern. During the apoptotic process, caspase-3, caspase-8 and caspase-9 were activated by H2O2. In addition, multiple physiological and pathological changes of gill cells were discovered after 24 h exposure to 5 mM H2O2, including aggregation and condensation of nuclear chromatin, appearance of extremely irregular nuclei with finger-like buds, disappearance of the organelles around the nuclei, swollen and dissolved cristae of mitochondria. We propose that H2O2-induced stress leads to mitochondria lesions oxidative injury and triggers apoptotic response through the caspase pathway in freshwater crab.  相似文献   

7.
Trimetazidine is a well-established anti-ischemic drug, which has been used for long time in the treatment of pathological conditions related with the generation of reactive oxygen species. However, although extensively studied, its molecular mode of action remains largely unknown. In the present study, the ability of trimetazidine to protect low-density lipoproteins (LDL) from oxidation and cultured cells from H2O2-induced DNA damage was investigated. Trimetazidine, tested at concentrations 0.02 to 2.20 mM, was shown to offer significant protection to LDL exposed to three different oxidizing systems, namely copper, Fe/ascorbate, and met-myoglobin/H2O2. The oxidizability of LDL was estimated by measuring, (i) the lag period, (ii) the maximal rate of conjugated diene formation, (iii) the total amount of conjugated dienes formed, (iv) the electrophoretic migration of LDL protein in agarose gels (REM), and (v) the inactivation of the enzyme PAF-acetylhydrolase present in LDL. In addition, the presence of trimetazidine decreased considerably the DNA damage in H2O2-exposed Jurkat cells in culture. H2O2 was continuously generated by the action of glucose oxidase at a rate of 11.8 ± 1.5 μM per min (60 ng enzyme per 100 μl), and DNA damage was assessed by the single cell gel electrophoresis assay (also called comet assay). The protection offered by trimetazidine in this system (about 30% at best) was transient, indicating modification of this agent during its action. These results indicate that trimetazidine can modulate the action of oxidizing agents in different systems. Although its mode of action is not clarified, the possibility that it acts as a lipid barrier permeable transition metal chelator is considered.  相似文献   

8.
Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC‐5 (retinal ganglion cell‐5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC‐5 under these conditions. Sub‐confluent cells were treated either with H2O2 or maintained in SFM (serum‐free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC‐5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c‐Jun N‐terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho‐JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho‐JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC‐5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.  相似文献   

9.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   

10.
Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future.  相似文献   

11.
The study was performed to investigate the influence of lipoproteins (LP) on the thromboxane (TX) A2 formation capacity of platelets in clotting whole blood in vitro. The different lipoprotein fractions VLDL, LDL, HDL2 and HDL3 were isolated from blood of normo- or dyslipidemic volunteers by ultracentrifugation. These lipoproteins were incubated in blood with different levels of serum total cholesterol (TC) taken from normolipidemics (TC < 200 mg/dl), moderate hypercholesterolemics (TC: 200–250 mg/dl) or subjects with high cholesterol level (TC > 250 mg/dl), respectively. The amount of serum TXA2 formed within 60 min at 37°C was measured by enzyme immunoassay. The results obtained show that the efficacy of separate LP fractions to influence the TXA2 production depends not only on the type of LP fraction but also on the source of plasma used for isolation of LP and on the cholesterol level in the blood for incubation: LDL taken from normolipidemics or moderate hyperlipidemics inhibited the TXA2 formation in blood from normolipidemics (P < 0.02, respectively), but enhanced it in blood from persons with moderate hypercholesterolemia (P < 0.05). LDL from hyperlipidemics enhanced TXA2 production in blood from hyperlipidemics (P < 0.05). The HDL2 fractions inhibited the TXA2 formation in blood from normo- and hypercholesterolemics (P < 0.02, resp.), but there was no effect of HDL2 in clotting blood from persons with moderate hypercholesterolemia. All HDL3 fractions tested inhibited the TXA2 formation in all types of blood used for clotting (P < 0.02, resp.), probably due to their great cholesterol accepting capacity.  相似文献   

12.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   

13.
Ozone exposure stimulates an oxidative burst in leaves of sensitive plants, resulting in the generation and accumulation of hydrogen peroxide (H2O2) in tobacco and tomato, and superoxide (O2–?) together with H2O2 in Arabidopsis accessions. Accumulation of these reactive oxygen species (ROS) preceded the induction of cell death, and both responses co‐occurred spatially in the periveinal regions of the leaves. Re‐current ozone exposure of the sensitive tobacco cv. Bel W3 in closed chambers or in the field led to an enlargement of existing lesions by priming the border cells for H2O2 accumulation. Open top chamber experiments with native herbaceous plants in the field showed that Malva sylvestris L. accumulates O2–? at those sites that later exhibit plant cell death. Blocking of ROS accumulation markedly reduced ozone‐induced cell death in tomato, Arabidopsis and M. sylvestris. It is concluded that ozone triggers an in planta generation and accumulation of H2O2 and/or O2–? depending on the species, accession and cultivar, and that both these reactive oxygen species are involved in the induction of cell death in sensitive crop and native plants.  相似文献   

14.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H2O2) toxicity and protect cells against H2O2 toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H2O2 toxicity in cultured liver endothelial cells over a wide range of NO and H2O2 concentrations. NO was generated by spermine NONOate (SpNO, 0.001–1 mM), H2O2 was generated continuously by glucose/glucose oxidase (GOD, 20–300 U/l), or added as a bolus (200 μM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H2O2-induced cell death. SpNO concentrations >0.1 mM were injurious with low H2O2 concentrations, but protective at high H2O2 concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H2O2 steady-state levels in line with inhibition of H2O2 degradation. Thus, the overall effect of NO on H2O2 toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H2O2 levels and enhancement being predominant with high NO and low H2O2 levels.  相似文献   

15.
Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments. Programmed cell death or apoptosis is a physiological mechanism of cell death, that probably evolved with multicellularity, and is indispensable for normal growth and development.Dictyostelium discoideum, an eukaryotic developmental model, shows both unicellular and multicellular forms in its life cycle and exhibits apparent caspase-independent programmed cell death, and also shows high resistance to oxidative stress. An attempt has been made to investigate the biochemical basis for high resistance ofD. discoideum cell death induced by different oxidants. Dose-dependent induction of cell death by exogenous addition of hydrogen peroxide (H2O2),in situ generation of H2O2 by hydroxylamine, and nitric oxide (NO) generation by sodium nitroprusside treatment inD. discoideum were studied. The AD50 doses (concentration of the oxidants cusing 50% of the cells to die) after 24 h of treatment were found to be 0.45 mM, 4 mM and 1 mM, respectively. Studies on enzymatic antioxidant status ofD. discoideum when subjected to oxidative stress, NO and nutrient stress reveal that superoxide dismutase and catalase were unchanged; a significant induction of glutathione peroxidase was observed. Interestingly, oxidative stress-induced lipid membrane peroxidative damage could not be detected. The results shed light on the biochemical basis for the observed high resistance to oxidative stress inD. discoideum.  相似文献   

16.
Cellular imbalance in the levels of antioxidants and reactive oxygen species (ROS) is directly associated with a number of pathological states and results in programmed cell death or apoptosis. We demonstrate the use ofin vitro culturedSpodoptera frugiperda (sf9) insect cells as a model to study oxidative stress induced programmed cell death. Apoptosis ofin vitro cultured sf9 cells was induced by the exogenous treatment of H2O2 to cells growing in culture. The AD50 (concentration of H2O2 inducing about 50% apoptotic response) varied with the duration of treatment, batch to batch variation of H2O2 and the physiological state of cells. At 24 h post-treatment with H2O2 AD50 was about 475 Μm. Apoptosis could also be induced byin situ generation of H2O2 by the inhibition of catalase activity upon hydroxylamine treatment. Hydroxylamine acted synergistically with H2O2 with an AD50 of 2.2 mM. DMSO, a free radical scavenger, inhibited H2O2-induced apoptosis thereby confirming the involvement of reactive oxygen species. Exposure of cells to UV radiation (312 nm) resulted in a dose-dependent induction of apoptosis. These results provide evidence on the novel use of insect cells as a model for oxidative stress-induced apoptosis.  相似文献   

17.
Summary

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion (O2?), and hydroxyl radical (OH?) have been implicated in mediating various pathological events such as cancer, atherosclerosis, diabetes, ischemia, inflammatory diseases, and the aging process. The glutathione (GSH) redox cycle and antioxidant enzymes—superoxide dismutase (SOD) and catalase (CAT)—play an important role in scavenging ROS and preventing cell injury. Pycnogenol has been shown to protect endothelial cells against oxidant-induced injury. The present study determined the effects of pycnogenol on cellular metabolism of H2O2 and O2? and on glutathione-dependent and -independent antioxidant enzymes in bovine pulmonary artery endothelial cells (PAEC). Confluent monolayers of PAEC were incubated with pycnogenol, and oxidative stress was triggered by hypoxanthine and xanthine oxidase or H2O2. Pycnogenol caused a concentration-dependent enhancement of H2O2 and O2? clearance. It increased the intracellular GSH content and the activities of GSH peroxidase and GSH disulfide reductase. It also increased the activities of SOD and CAT. The results suggest that pycnogenol promotes a protective antioxidant state by upregulating important enzymatic and nonenzymatic oxidant scavenging systems.  相似文献   

18.
A highly oxidative stress-tolerant japonica rice line was isolated by T-DNA insertion mutation followed by screening in the presence of 50 mM H2O2. The T-DNA insertion was mapped to locus Os09g0547500, the gene product of which was annotated as lysine decarboxylase-like protein (GenBank accession No. AK062595). We termed this gene OsLDC-like 1, for Oryza sativa lysine decarboxylase-like 1. The insertion site was in the second exon and resulted in a 27 amino acid N-terminal deletion. Despite this defect in OsLDC-like 1, the mutant line exhibited enhanced accumulation of the polyamines (PAs) putrescine, spermidine, and spermine under conditions of oxidative stress. The generation of reactive oxygen species (ROS) in the mutant line was assessed by qRT-PCR analysis of NADPH oxidase (RbohD and RbohF), and by DCFH-DA staining. Cellular levels of ROS in osldc-like 1 leaves were significantly lower than those in the wild-type (WT) rice after exposure to oxidative, high salt and acid stresses. Exogenouslyapplied PAs such as spermidine and spermine significantly inhibited the stress-induced accumulation of ROS and cell damage in WT leaves. Additionally, the activities of ROS-detoxifying enzymes were increased in the homozygous mutant line in the presence or absence of H2O2. Thus, mutation of OsLDC-like 1 conferred an oxidative stress-tolerant phenotype. These results suggest that increased cellular PA levels have a physiological role in preventing stress-induced ROS and ethylene accumulation and the resultant cell damage.  相似文献   

19.
Index     
Hydrogen peroxide (H2O2) can induce cell damage by generating reactive oxygen species (ROS), resulting in DNA damage and cell death. The aim of this study is to elucidate the protective effects of fisetin (3,7,3′,4′,-tetrahydroxy flavone) against H2O2-induced cell damage. Fisetin reduced the level of superoxide anion, hydroxyl radical in cell free system, and intracellular ROS generated by H2O2. Moreover, fisetin protected against H2O2-induced membrane lipid peroxidation, cellular DNA damage, and protein carbonylation, which are the primary cellular outcomes of H2O2 treatment. Furthermore, fisetin increased the level of reduced glutathione (GSH) and expression of glutamate-cysteine ligase catalytic subunit, which is decreased by H2O2. Conversely, a GSH inhibitor abolished the cytoprotective effect of fisetin against H2O2-induced cells damage. Taken together, our results suggest that fisetin protects against H2O2-induced cell damage by inhibiting ROS generation, thereby maintaining the protective role of the cellular GSH system.  相似文献   

20.
Heavy metals (HMs) are toxic pollutants, which can negatively affect the physiological processes of plants; moreover, HMs can be present in the food chain endangering people’s health. The aim of this study was to investigate the early physiological events during HM exposure in the root tips of the food plant Pisum sativum L. Ten-day-old pea plants were treated with 100 μM CdCl2 or CuSO4, in nutrient solution for 48 h. We studied the rapid formation of different reactive oxygen species (hydrogen peroxide H2O2 and superoxide radical O2·−) and reactive nitrogen species (nitric oxide NO· and peroxynitrite ONOO) together with membrane damage and cell death in the meristem cells of pea roots using in vivo and in situ microscopic methods. In our experimental system, copper and cadmium induced the formation of H2O2 and NO. Two hours of heavy metal treatments resulted in an increased O2·− formation; however, later the level of this reactive molecule dramatically decreased. We found that high levels of NO were needed for ONOO production under HM exposure. A fast loss of membrane integrity and decreased cell viability were detected in root tips of copper-treated plants. The effects of cadmium seemed to be slower compared to copper, but this non-essential metal also caused cell death. We concluded that viability decreased when NO and H2O2 levels were simultaneously high in the same tissues. Using the NO scavenger it was also evidenced that NO generation is essential for cell death induction under copper or cadmium stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号