首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Action potential conduction in myelinated nerve fibers depends on a polarized axonal membrane. Voltage-gated Na(+) and K(+) channels are clustered at nodes of Ranvier and mediate the transmembrane currents necessary for rapid saltatory conduction. Paranodal junctions flank nodes and function as attachment sites for myelin and as paracellular and membrane protein diffusion barriers. Common molecular mechanisms, directed by myelinating glia, are used to establish these axonal membrane domains. Initially, heterophilic interactions between glial and axonal cell adhesion molecules define the locations where nodes or paranodes form. Subsequently, within each domain, axonal cell adhesion molecules are stabilized and retained through interactions with cytoskeletal and scaffolding proteins, including ankyrins and spectrins.  相似文献   

2.
Almost 90 years ago, Lillie reported that rapid saltatory conduction arose in an iron wire model of nerve impulse propagation when he covered the wire with insulating sections of glass tubing equivalent to myelinated internodes. This led to his suggestion of a similar mechanism explaining rapid conduction in myelinated nerve. In both their evolution and their development, myelinating axons must make a similar transition between continuous and saltatory conduction. Achieving a smooth transition is a potential challenge that we examined in computer models simulating a segmented insulating sheath surrounding an axon having Hodgkin-Huxley squid parameters. With a wide gap under the sheath, conduction was continuous. As the gap was reduced, conduction initially slowed, owing to the increased extra-axonal resistance, then increased (the “rise”) up to several times that of the unmyelinated fiber, as saltatory conduction set in. The conduction velocity slowdown was little affected by the number of myelin layers or modest changes in the size of the “node,” but strongly affected by the size of the “internode” and axon diameter. The steepness of the rise of rapid conduction was greatly affected by the number of myelin layers and axon diameter, variably affected by internode length and little affected by node length. The transition to saltatory conduction occurred at surprisingly wide gaps and the improvement in conduction speed persisted to surprisingly small gaps. The study demonstrates that the specialized paranodal seals between myelin and axon, and indeed even the clustering of sodium channels at the nodes, are not necessary for saltatory conduction.  相似文献   

3.
Morphology and recordings of electrical activity of Kuruma shrimp (Penaeus japonicus) giant medullated nerve fibers were carried out. A pair of giant fibers with external diameter of about 120 μ and 10 μ in myelin thickness were found in the ventral nerve cord. The diameter of the axon is about 10 μ. Thus there is a wide gap between the axon and the external myelin sheath. Each axon is doubly coated directly by Schwann cells and indirectly by the myelin sheath layer which is produced by those Schwann cells. Impulse conduction velocities of these giant fibers showed a range between 90–210 m/sec at about 22°C. Large action potentials (up to 113 mV, rise time of 0.16–0.3 msec, maximum rate of rise of 650–1250 V/sec, half decay time of 0.2–0.3 msec, maximum rate of fall of 250–450 V/sec and total duration of less than 1.5 msec) could be obtained by inserting microelectrodes or by longitudinal insertion of 25 μ diameter capillary electrodes into the gap but no DC-potential difference was observed across the myelin sheath. Transmyelin electrical parameters were very favorable for fast impulse conduction: myelin resistance of 3 × 104 Ω cm2; time constant of 0.38 msec; myelin capacitance of 1.35 × 10?8 F/cm2; gap fluid resistivity of 23 Ω cm. The existence of nodes of Ranvier could not be demonstrated morphologically, but electrophysiological evidence suggests that a type of saltatory conduction occurs in these giant fibers.  相似文献   

4.
The myelin of central and peripheral nervous system of UDP-galactose-ceramide galactosyltransferase deficient mice (cgt -/-) is completely depleted of its major lipid constituents, galactocerebrosides and sulfatides. The deficiency of these glycolipids affects the biophysical properties of the myelin sheath and causes the loss of the rapid saltatory conduction velocity of myelinated axons. With the onset of myelination, null mutant cgt -/- mice develop fatal neurological defects. CNS and PNS analysis of cgt -/- mice revealed (1) hypomyelination of axons of the spinal cord and optic nerves, but no apoptosis of oligodendrocytes, (2) redundant myelin in younger mice leading to vacuolated nerve fibers in cgt -/- mice, (3) the occurrence of multiple myelinated CNS axons, and (4) severely distorted lateral loops in CNS paranodes. The loss of saltatory conduction is not associated with a randomization of voltage-gated sodium channels in the axolemma of PNS fibers. We conclude that cerebrosides (GalC) and sulfatides (sGalC) play a major role in CNS axono-glial interaction. A close axono-glial contact is not a prerequisite for the spiraling and compaction process of myelin. Axonal sodium channels remain clustered at the nodes of Ranvier independent of the change in the physical properties of myelin membrane devoid of galactosphingolipids. Increased intracellular concentrations of free ceramides do not trigger apoptosis of oligodendrocytes.  相似文献   

5.
The myelinated giant nerve fiber of the shrimp, Penaeus japonicus, is known to have the fastest velocity of saltatory impulse conduction among all nerve fibers so far studied, owing to its long distances between nodal regions and large diameter. For a better understanding of the basis of this fast conduction, a medial giant fiber of the ventral nerve cord of the shrimp was isolated, and ionic currents of its presynaptic membrane (a functional node) were examined using the sucrose-gap voltage-clamp method. Inward currents induced by depolarizing voltage pulses had a maximum value of 0.5 μA and a reversal potential of 120 mV. These currents were completely suppressed by tetrodotoxin and greatly prolonged by scorpion toxin, suggesting that they are the Na current. Both activation and inactivation kinetics of the Na current were unusually rapid in comparison with those of vertebrate nodes. According to a rough estimation of the excitable area, the density of Na current reached 500 mA/cm2. In many cases, the late outward currents were induced only by depolarizing pulses larger than 50 mV in amplitude. The slope conductance measured from late currents were mostly smaller than that measured from the Na current, suggesting a low density of K channels in the synaptic membrane. These characteristics are in good harmony with the fact that the presynaptic membrane plays a role as functional node in the fastest impulse conduction of this nerve fiber.  相似文献   

6.
The myelinated giant nerve fiber of the shrimp, Penaeus japonicus, is known to have the fastest velocity of saltatory impulse conduction among all nerve fibers so far studied, owing to its long distances between nodal regions and large diameter. For a better understanding of the basis of this fast conduction, a medial giant fiber of the ventral nerve cord of the shrimp was isolated, and ionic currents of its presynaptic membrane (a functional node) were examined using the sucrose-gap voltage-clamp method. Inward currents induced by depolarizing voltage pulses had a maximum value of 0.5 microA and a reversal potential of 120 mV. These currents were completely suppressed by tetrodotoxin and greatly prolonged by scorpion toxin, suggesting that they are the Na current. Both activation and inactivation kinetics of the Na current were unusually rapid in comparison with those of vertebrate nodes. According to a rough estimation of the excitable area, the density of Na current reached 500 mA/cm2. In many cases, the late outward currents were induced only by depolarizing pulses larger than 50 mV in amplitude. The slope conductance measured from late currents were mostly smaller than that measured from the Na current, suggesting a low density of K channels in the synaptic membrane. These characteristics are in good harmony with the fact that the presynaptic membrane plays a role as functional node in the fastest impulse conduction of this nerve fiber.  相似文献   

7.
This study explores in detail the functional consequences of subtle retraction and detachment of myelin around the nodes of Ranvier following mild-to-moderate crush or stretch mediated injury. An equivalent electrical circuit model for a series of equally spaced nodes of Ranvier was created incorporating extracellular and axonal resistances, paranodal resistances, nodal capacitances, time varying sodium and potassium currents, and realistic resting and threshold membrane potentials in a myelinated axon segment of 21 successive nodes. Differential equations describing membrane potentials at each nodal region were solved numerically. Subtle injury was simulated by increasing the width of exposed nodal membrane in nodes 8 through 20 of the model. Such injury diminishes action potential amplitude and slows conduction velocity from 19.1 m/sec in the normal region to 7.8 m/sec in the crushed region. Detachment of paranodal myelin, exposing juxtaparanodal potassium channels, decreases conduction velocity further to 6.6 m/sec, an effect that is partially reversible with potassium ion channel blockade. Conduction velocity decreases as node width increases or as paranodal resistance falls. The calculated changes in conduction velocity with subtle paranodal injury agree with experimental observations. Nodes of Ranvier are highly effective but somewhat fragile devices for increasing nerve conduction velocity and decreasing reaction time in vertebrate animals. Their fundamental design limitation is that even small mechanical retractions of myelin from very narrow nodes or slight loosening of paranodal myelin, which are difficult to notice at the light microscopic level of observation, can cause large changes in myelinated nerve conduction velocity.  相似文献   

8.
Summary The characteristics of fibers of a cutaneous nerve supplying the wing skin of the pigeon have been investigated with electrophysiological and electron microscopic techniques.Recordings of the compound action potential showed four distinct peaks with conduction velocities of about 30 m/s, 12 m/s, 4 m/s and 0.5 m/s.From electron micrographs both fiber diameters and thickness of myelin sheath were assessed and used as criteria for segregating various fiber populations. Altogether four groups could be discerned: large thickly myelinated fibers, small thickly myelinated fibers, small thinly myelinated fibers, and unmyelinated or C-fibers. The subdivision of the thickly myelinated fibers into two populations is evidenced mainly by corresponding peaks in the compound action potential. The thinly myelinated fibers with a mean diameter of 2 m contributed about 90% of all myelinated fibers in this nerve.When comparing fiber dimensions and conduction velocities of this avian nerve with those of mammalian cutaneous nerves, the lower CV's of avian nerve fibers can be explained by smaller diameters and thinner myelin sheaths.The results of this investigation are a prerequisite for latency considerations in central somatosensory pathways in birds.Abbreviations CAP compound action potential - CV conduction velocity - D fiber diameter - d axon diameter - g ratio d/D - m thickness of myelin sheath  相似文献   

9.
Speed of nerve impulse conduction is greatly increased by myelin, a multi-layered membranous sheath surrounding axons. Myelinated axons are ubiquitous among the vertebrates, but relatively rare among invertebrates. Electron microscopy of calanoid copepods using rapid cryofixation techniques revealed the widespread presence of myelinated axons. Myelin sheaths of up to 60 layers were found around both sensory and motor axons of the first antenna and interneurons of the ventral nerve cord. Except at nodes, individual lamellae appeared to be continuous and circular, without seams, as opposed to the spiral structure of vertebrate and annelid myelin. The highly organized myelin was characterized by the complete exclusion of cytoplasm from the intracellular spaces of the cell generating it. In regions of compaction, extracytoplasmic space was also eliminated. Focal or fenestration nodes, rather than circumferential ones, were locally common. Myelin lamellae terminated in stepwise fashion at these nodes, appearing to fuse with the axolemma or adjacent myelin lamellae. As with vertebrate myelin, copepod sheaths are designed to minimize both resistive and capacitive current flow through the internodal membrane, greatly speeding nerve impulse conduction. Copepod myelin differs from that of any other group described, while sharing features of every group. Accepted: 8 January 2000  相似文献   

10.
Phylogenetic development of myelin glycosphingolipids   总被引:2,自引:0,他引:2  
Myelin is a highly specialized membrane, which enwraps axons and facilitates saltatory nerve conduction in vertebrates. Galactocerebroside and its sulfate ester, sulfatide, are highly localized in myelin. To understand the role played by these galactosphingolipids we investigated the changes of these myelin-specific compounds during the course of the evolution of myelin. We found that urodele nerve myelin lacks alpha-hydroxy fatty acid-containing galactosphingolipids. Our morphological and physiological studies of urodele nerves indicated that these hydroxy fatty acid-containing galactosphingolipids probably contribute to fast nerve conduction. Also it is suspected that they are involved in the regulation of the thickness of myelin in relation to the size of the axon. In another study, we discovered that glucocerebroside, which has glucose instead of galactose as its carbohydrate component, is abundantly present in the myelin-like sheath membrane of crustacean nerves. Subsequently, the phylogenetic study indicated that galactocerebrosides were limited to the nervous system of deuterostomes, while all protostome nerves contain glucocerebrosides. The role of glucocerebrosides in multilayered membranes and in the conduction velocity of the protostome nervous system is discussed.  相似文献   

11.
X-ray diffraction has provided extensive information about the arrangement of lipids and proteins in multilamellar myelin. This information has been limited to the abundant inter-nodal regions of the sheath because these regions dominate the scattering when x-ray beams of 100 µm diameter or more are used. Here, we used a 1 µm beam, raster-scanned across a single nerve fiber, to obtain detailed information about the molecular architecture in the nodal, paranodal, and juxtaparanodal regions. Orientation of the lamellar membrane stacks and membrane periodicity varied spatially. In the juxtaparanode-internode, 198–202 Å-period membrane arrays oriented normal to the nerve fiber axis predominated, whereas in the paranode-node, 205–208 Å-period arrays oriented along the fiber direction predominated. In parts of the sheath distal to the node, multiple sets of lamellar reflections were observed at angles to one another, suggesting that the myelin multilayers are deformed at the Schmidt-Lanterman incisures. The calculated electron density of myelin in the different regions exhibited membrane bilayer profiles with varied electron densities at the polar head groups, likely due to different amounts of major myelin proteins (P0 glycoprotein and myelin basic protein). Scattering from the center of the nerve fibers, where the x-rays are incident en face (perpendicular) to the membrane planes, provided information about the lateral distribution of protein. By underscoring the heterogeneity of membrane packing, microdiffraction analysis suggests a powerful new strategy for understanding the underlying molecular foundation of a broad spectrum of myelinopathies dependent on local specializations of myelin structure in both the PNS and CNS.  相似文献   

12.
Variations in the structure of Ranvier nodes and of the paranodal region of frog nerve fibers were examined in an intravital light-optical investigation. Several morphological characteristics of the degree of disturbance of the structures of the paranodal zone (myelin cones and bulbs of the node) are compared. Morphological characteristics for the same isolated nerve fibers were compared with electrophysiological characteristics obtained by the voltage clamp method. A definite parallel was found between the degree of morphological changes in the paranodal myelin and the fall in the maximal sodium and potassium conductances of the membrane, while the leakage conductance remained relatively constant. The lower resistance of the sodium and potassium systems to injurious factors evidently reflects the more complex molecular organization of the excitable (sodium and potassium) than of the leakage channels. Considerable changes in the properties of the sodium channels caused by batrachotoxin were not accompanied by any visible changes in the paranodal regions of the myelin sheath. The results are examined from the standpoint of modern views regarding the nature of axo-glial relations in the nerve fiber.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 400–406, July–August, 1978.  相似文献   

13.
14.
Adult chameleon myelinated peripheral nerve fibers have been studied with the electron microscope in thin sections. The outer lamella of the myelin sheath has been found to be connected as a double membrane to the surface of the Schwann cell. The inner lamella is connected as a similar double membrane with the double axon-Schwann membrane. The relations of these double connecting membranes suggest that the layered myelin structure is composed of a double membrane which is closely wound about the axon as a helix. These findings support the new theory of myelinogenesis proposed recently by Geren. The possible significance of these results with respect to cell surface membranes and cytoplasmic double membranes is discussed.  相似文献   

15.
Developmental alterations of paranodal fiber segments have not been investigated systematically in human nerve fibers at the light- and electron-microscopic level. We have therefore analyzed developmental changes in the fine structure of the paranode in 43 human sural nerves during the axonal growth period up to 5 years of age, and during the subsequent myelin development up to 20 years and thereafter. The nodal, internodal, and paranodal axon diameters reach their adult values at 4–5 years of age. The ratio between internodal and paranodal axon diameters remains constant at 1.8–2.0. Despite a considerable increase in myelin sheath thickness, the length of the paranodal myelin sheath attachment zone at the axon does not increase correspondingly, because of attenuation, separation from the axolemma, and piling up of myelin loops in the paranode. Separation of variable numbers of terminal myelin loops from the underlying axolemma results in the formation of bracelets of Nageotte, whereas the transverse bands of these loops disappear. The adaptation of the paranodal myelin sheath to axonal expansion during development probably occurs by uneven gliding of the paranodal myelin loops simultaneously with internodal slippage of myelin lamellae. Since mechanically stabilizing structures (tight junctions and desmosomes between adjacent paranodal myelin processes; transverse bands between myelin loops and paranodal axolemma) are unevenly arranged, especially during rapid axonal growth, paranodal axonal growth with simultaneous adaptation of the myelin sheath is probably discontinuous with time.Presented in part at the 10th Biennial Meeting of the Peripheral Nerve Study Group at Arden House, Harriman, New York, USA, June 30th–July 3rd, 1991, and as a doctoral thesis (M. Bertram) at the RWTH Aachen in 1991  相似文献   

16.
Myelinated fibers are organized into distinct domains that are necessary for saltatory conduction. These domains include the nodes of Ranvier and the flanking paranodal regions where glial cells closely appose and form specialized septate-like junctions with axons. These junctions contain a Drosophila Neurexin IV-related protein, Caspr/Paranodin (NCP1). Mice that lack NCP1 exhibit tremor, ataxia, and significant motor paresis. In the absence of NCP1, normal paranodal junctions fail to form, and the organization of the paranodal loops is disrupted. Contactin is undetectable in the paranodes, and K(+) channels are displaced from the juxtaparanodal into the paranodal domains. Loss of NCP1 also results in a severe decrease in peripheral nerve conduction velocity. These results show a critical role for NCP1 in the delineation of specific axonal domains and the axon-glia interactions required for normal saltatory conduction.  相似文献   

17.
Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier. Gliomedin is expressed by myelinating Schwann cells and accumulates at the edges of each myelin segment during development, where it aligns with the forming nodes. Eliminating the expression of gliomedin by RNAi, or the addition of a soluble extracellular domain of neurofascin to myelinating cultures, which caused the redistribution of gliomedin along the internodes, abolished node formation. Furthermore, a soluble gliomedin induced nodal-like clusters of Na+ channels in the absence of Schwann cells. We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier.  相似文献   

18.
Myelination organizes axons into distinct domains that allow nerve impulses to propagate in a saltatory manner. The edges of the myelin sheath are sealed at the paranodes by axon-glial junctions that have a crucial role in organizing the axonal cytoskeleton. Here we propose a model in which the myelinated axons depend on the axon-glial junctions to stabilize the cytoskeletal transition at the paranodes. Thus paranodal regions are likely to be particularly susceptible to damage induced by demyelinating diseases such as multiple sclerosis.  相似文献   

19.
Experiments on frogs (Rana ridibunda) showed that, unlike in the whole nerve, prolonged after-depolarization and the associated phase of summation are absent in the single node of Ranvier of isolated nerve fibers. If, however, special measures are taken to prevent the stretching of the Ranvier node of single fibers, prolonged after-depolarization can be found in them. It is concluded that the absence of prolonged after-depolarization in single Ranvier nodes of nerve fibers isolated without additional precautions is the result of injury to the excitable membrane or to disturbance of the integrity of the ionic barrier surrounding it as a result of stretching of the fibers during dissection.  相似文献   

20.
Myelination allows the fast propagation of action potentials at a low energetic cost. It provides an insulating myelin sheath regularly interrupted at nodes of Ranvier where voltage-gated Na+ channels are concentrated. In the peripheral nervous system, the normal function of myelinated fibers requires the formation of highly differentiated and organized contacts between the myelinating Schwann cells, the axons and the extracellular matrix. Some of the major molecular complexes that underlie these contacts have been identified. Compact myelin which forms the bulk of the myelin sheath results from the fusion of the Schwann cell membranes through the proteins P0, PMP22 and MBP. The basal lamina of myelinating Schwann cells contains laminin-2 which associates with the glial complex dystroglycan/DPR2/L-periaxin. Non compact myelin, found in paranodal loops, periaxonal and abaxonal regions, and Schmidt-Lanterman incisures, presents reflexive adherens junctions, tight junctions and gap junctions, which contain cadherins, claudins and connexins, respectively. Axo-glial contacts determine the formation of distinct domains on the axon, the node, the paranode, and the juxtaparanode. At the paranodes, the glial membrane is tightly attached to the axolemma by septate-like junctions. Paranodal and juxtaparanodal axoglial complexes comprise an axonal transmembrane protein of the NCP family associated in cis and in trans with cell adhesion molecules of the immunoglobulin superfamily (IgSF-CAM). At nodes, axonal complexes are composed of Na+ channels and IgSF-CAMs. Schwann cell microvilli, which loosely cover the node, contain ERM proteins and the proteoglycans syndecan-3 and -4. The fundamental role of the cellular contacts in the normal function of myelinated fibers has been supported by rodent models and the detection of genetic alterations in patients with peripheral demyelinating neuropathies such as Charcot-Marie-Tooth diseases. Understanding more precisely their molecular basis now appears essential as a requisite step to further examine their involvement in the pathogenesis of peripheral neuropathies in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号