首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) has been implicated in the cell type-specific cytotoxic activity of some polyamine analogues. We now report that one polyamine analogue, 1, 12-dimethylspermine (DMSpm), produces a large induction of SSAT with no significant effects on growth in the human large cell lung carcinoma line, NCI H157. This cell line has been demonstrated to respond to other analogues with SSAT superinduction and cell death. Treatment of the lung cancer cell line with DMSpm produces a rapid increase in SSAT activity and a near complete depletion of the natural polyamines. Additionally, DMSpm supports cell growth in cells which have been depleted of their natural polyamines by the ornithine decarboxylase inhibitor, 2-difluoromethylornithine. The current results suggest that significant induction of SSAT can occur in the absence of cytotoxicity when the inducing polyamine analogue can support growth and that increased SSAT activity alone is not sufficient for cytotoxicity to occur. © 1995 Wiley-Liss Inc.  相似文献   

3.
4.
The retinoblastoma protein (pRb) pathway is frequently altered in breast cancer cells. pRb is involved in the regulation of cell proliferation and cell death. The breast cancer cell line L56Br-C1 does not express pRb and is extremely sensitive to treatment with the polyamine analogue N 1,N 11-diethylnorspermine (DENSPM) which causes apoptosis. Polyamines are essential for the regulation of cell proliferation, cell differentiation and cell death. DENSPM depletes cells of polyamines, e.g., by inducing the activity of the polyamine catabolic enzyme spermidine/spermine N 1-acetyltransferase (SSAT). In this study, L56Br-C1 cells were transfected with human pRb–cDNA. Overexpression of pRb inhibited DENSPM-induced cell death and DENSPM-induced SSAT activity. This suggests that the pRb protein level is a promising marker for polyamine depletion sensitivity and that there is a connection between pRb and the regulation of SSAT activity. We also show that SSAT protein levels and SSAT activity do not always correlate, suggesting that there is an unknown regulation of SSAT.  相似文献   

5.
The induction of polyamine catabolism and its production of H2O2 have been implicated in the response to specific antitumor polyamine analogues. The original hypothesis was that analogue induction of the rate-limiting spermidine/spermine N1-acetyltransferase (SSAT) provided substrate for the peroxisomal acetylpolyamine oxidase (PAO), resulting in a decrease in polyamine pools through catabolism, oxidation, and excretion of acetylated polyamines and the production of toxic aldehydes and H2O2. However, the recent discovery of the inducible spermine oxidase SMO(PAOh1) suggested the possibility that the original hypothesis may be incomplete. To examine the role of the catabolic enzymes in the response of breast cancer cells to the polyamine analogue N1,N1-bis(ethyl)norspermine (BENSpm), a stable knockdown small interfering RNA strategy was used. BENSpm differentially induced SSAT and SMO(PAOh1) mRNA and activity in several breast cancer cell lines, whereas no N1-acetylpolyamine oxidase PAO mRNA or activity was detected. BENSpm treatment inhibited cell growth, decreased intracellular polyamine levels, and decreased ornithine decarboxylase activity in all cell lines examined. The stable knockdown of either SSAT or SMO(PAOh1) reduced the sensitivity of MDA-MB-231 cells to BENSpm, whereas double knockdown MDA-MB-231 cells were almost entirely resistant to the growth inhibitory effects of the analogue. Furthermore, the H2O2 produced through BENSpm-induced polyamine catabolism was found to be derived exclusively from SMO(PAOh1) activity and not through PAO activity on acetylated polyamines. These data suggested that SSAT and SMO(PAOh1) activities are the major mediators of the cellular response of breast tumor cells to BENSpm and that PAO plays little or no role in this response.  相似文献   

6.
To develop a model system to investigate mechanisms of antiproliferative action of bis(ethyl)polyamine analogues, intermittent analogue treatments followed by recovery periods in drug-free medium were used to select an N(1), N(12)-bis(ethyl)spermine-resistant derivative of the Chinese hamster ovary cell line C55.7. The resulting C55.7Res line was at least 10-fold resistant to N(1),N(12)-bis(ethyl)spermine and N(1), N(11)-bis(ethyl)norspermine. The stability of the resistance in the absence of selection pressure was >/=9 months, indicating that a heritable genotypic change was responsible for the resistance phenotype. Polyamine transport alterations and multi-drug resistance were eliminated as causes of the resistance. Spermidine/spermine N(1)-acetyltransferase (SSAT) activity and regulation were altered in C55.7Res cells as basal activity was decreased, and no activity induction resulted from exposure to analogue concentrations, which caused 300-fold enzyme induction in parental cells. SSAT mRNA levels in the absence and presence of analogue were unchanged, but no SSAT protein was detected in C55.7Res cells. A point mutation, which results in the change leucine156 (a fully conserved residue) to phenylalanine, was identified in the C55.7Res SSAT cDNA. Expression of wtSSAT activity in C55.7Res cells restored sensitivity to bis(ethyl)polyamines. These results provided definitive evidence that SSAT activity is a critical target of the cytotoxic action of these analogues.  相似文献   

7.
Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N 1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N 1-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.  相似文献   

8.
The polyamines, spermidine and spermine, are abundant organic cations participating in many important cellular processes. We have previously shown that the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N 1-acetyltransferase (SSAT), has an alternative mRNA splice variant (SSATX) which undergoes degradation via nonsense-mediated mRNA decay (NMD) pathway, and that the intracellular polyamine level regulates the ratio of the SSATX and SSAT splice variants. The aim of this study was to investigate the effect of SSATX level manipulation on SSAT activity in cell culture, and to examine the in vivo expression levels of SSATX and SSAT mRNA. Silencing SSATX expression with small interfering RNA led to increased SSAT activity. Furthermore, transfection of SSAT-deficient cells with mutated SSAT gene (which produced only trace amount of SSATX) yielded higher SSAT activity than transfection with natural SSAT gene (which produced both SSAT and SSATX). Blocking NMD in vivo by protein synthesis inhibitor cycloheximide resulted in accumulation of SSATX mRNA, and like in cell culture, the increase of SSATX mRNA was prevented by administration of polyamine analog N 1 ,N 11 -diethylnorspermine. Although SSATX/total SSAT mRNA ratio did not correlate with polyamine levels or SSAT activity between different tissues, increasing polyamine levels in a given tissue led to decreased SSATX/total SSAT mRNA ratio and vice versa. Taken together, the regulated unproductive splicing and translation of SSAT has a physiological relevance in modulating SSAT activity. However, in addition to polyamine level there seems to be additional factors regulating tissue-specific alternative splicing of SSAT.  相似文献   

9.
We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine.  相似文献   

10.
11.
Tumor necrosis factor alpha (TNFalpha) is a potent pleiotropic cytokine produced by many cells in response to inflammatory stress. The molecular mechanisms responsible for the multiple biological activities of TNFalpha are due to its ability to activate multiple signal transduction pathways, including nuclear factor kappaB (NFkappaB), which plays critical roles in cell proliferation and survival. TNFalpha displays both apoptotic and antiapoptotic properties, depending on the nature of the stimulus and the activation status of certain signaling pathways. Here we show that TNFalpha can lead to the induction of NFkappaB signaling with a concomitant increase in spermidine/spermine N(1)-acetyltransferase (SSAT) expression in A549 and H157 non-small cell lung cancer cells. Induction of SSAT, a stress-inducible gene that encodes a rate-limiting polyamine catabolic enzyme, leads to lower intracellular polyamine contents and has been associated with decreased cell growth and increased apoptosis. Stable overexpression of a mutant, dominant negative IkappaBalpha protein led to the suppression of SSAT induction by TNFalpha in these cells, thereby substantiating a role of NFkappaB in the induction of SSAT by TNFalpha. SSAT promoter deletion constructs led to the identification of three potential NFkappaB response elements in the SSAT gene. Electromobility shift assays, chromatin immunoprecipitation experiments and mutational studies confirmed that two of the three NFkappaB response elements play an important role in the regulation of SSAT in response to TNFalpha. The results of these studies indicate that a common mediator of inflammation can lead to the induction of SSAT expression by activating the NFkappaB signaling pathway in non-small cell lung cancer cells.  相似文献   

12.
Bis(benzyl)polyamine analogues (e.g. NN'-bis(3-[(phenylmethyl)amino]propyl)-1,8-diamino-octane [C6H5CH2NH-(CH2)3NH(CH2)8NH(CH2)3NHCH2C6H5]) have previously been shown to regulate polyamine biosynthesis and growth of rat hepatoma (HTC) cells. Saturable uptake of the analogues, the ability of other bis(benzyl)polyamine analogues to compete for this uptake and the trans-acceleration of this uptake in pre-loaded cells indicate that these novel compounds are accumulated through the action of a transport system in HTC cells. A mutant Chinese-hamster-ovary (CHO) cell line, CHOMG, which lacks a functional polyamine-transport system, exhibited saturable bis(benzyl)polyamine uptake identical with that observed in the parental CHO cells, which have normal polyamine transport. The uptake of the analogue by both CHOMG and CHO cells was competitively inhibited by other bis(benzyl)polyamine analogues, but was insensitive to excess spermine. Treatment with alpha-difluoromethylornithine, an inhibitor of polyamine biosynthesis, resulted in the enhancement of spermine uptake in CHO cells but did not alter the uptake of a bis(benzyl)polyamine analogue by either CHO or CHOMG cells. Thus it appears that bis(benzyl)polyamine analogues are substrates for a mammalian-cell-transport system distinct from the polyamine-transport system.  相似文献   

13.
Acetylation of polyamines by spermidine/spermine N(1)-acetyltransferase (SSAT) has been implicated in their degradation and/or export out of the cell. The relationship of SSAT to polyamine pool dynamics and cell growth is not yet clearly understood. MCF-7 human breast carcinoma cells were transfected with tetracycline-regulated (Tet-off) SSAT human cDNA or murine gene. Doxycycline removal for >2 days caused a approximately 20-fold increase in SSAT RNA and a approximately 10-fold increase in enzyme activity. After 4 days, intracellular putrescine and spermidine pools were markedly lowered, and cell growth was inhibited. Growth inhibition could not be prevented with exogenous polyamines due to a previously unrecognized ability of SSAT to rapidly acetylate influxing polyamines and thereby prevent restoration of the endogenous pools. Instead, cells accumulated high levels of N(1)-acetylspermidine, N(1)-acetylspermine, and N(1), N(12)-diacetylspermine, a metabolite not previously reported in mammalian cells. Doxycycline deprivation before treatment with N(1), N(11)-diethylnorspermine markedly increased analog induction of SSAT mRNA and activity and enhanced growth sensitivity to the analog by approximately 100-fold. Overall, the findings demonstrate that conditional overexpression of SSAT lowers polyamine pools, inhibits cell growth, and markedly enhances growth sensitivity to certain analogs. The enzyme also plays a remarkably efficient role in maintaining polyamine pool homeostasis during challenges with exogenous polyamines.  相似文献   

14.
Purvalanol A is a specific CDK inhibitor which triggers apoptosis by causing cell cycle arrest in cancer cells. Although it has strong apoptotic potential, the mechanistic action of Purvalanol A on significant cell signaling targets has not been clarified yet. Polyamines are crucial metabolic regulators affected by CDK inhibition because of their role in cell cycle progress as well. In addition, malignant cells possess impaired polyamine homeostasis with high level of intracellular polyamines. Especially induction of polyamine catabolic enzymes spermidine/spermine N1-acetyltransferase (SSAT), polyamine oxidase (PAO) and spermine oxidase (SMO) induced toxic by-products in correlation with the induction of apoptosis in cancer cells. In this study, we showed that Purvalanol A induced apoptosis in caspase- dependent manner in MCF-7 ER(+) cells, while MDA-MB-231 (ER?) cells were less sensitive against drug. In addition Bcl-2 is a critical target for Purvalanol A, since Bcl-2 overexpressed cells are more resistant to Purvalanol A-mediated apoptosis. Furthermore, exposure of MCF-7 cells to Purvalanol A triggered SSAT and PAO upregulation and the presence of PAO/SMO inhibitor, MDL 72,527 prevented Purvalanol A-induced apoptosis.  相似文献   

15.
Recent studies suggest that overexpression of the polyamine-acetylating enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) significantly increases metabolic flux through the polyamine pathway. The concept derives from the observation that SSAT-induced acetylation of polyamines gives rise to a compensatory increase in biosynthesis and presumably to increased flow through the pathway. Despite the strength of this deduction, the existence of heightened polyamine flux has not yet been experimentally demonstrated. Here, we use the artificial polyamine precursor 4-fluoro-ornithine to measure polyamine flux by tracking fluorine unit permeation of polyamine pools in human prostate carcinoma LNCaP cells. Conditional overexpression of SSAT was accompanied by a massive increase in intracellular and extracellular acetylated spermidine and by a 6-20-fold increase in biosynthetic enzyme activities. In the presence of 300 microM 4-fluoro-ornithine, SSAT overexpression led to the sequential appearance of fluorinated putrescine, spermidine, acetylated spermidine, and spermine. As fluorinated polyamines increased, endogenous polyamines decreased, so that the total polyamine pool size remained relatively constant. At 24 h, 56% of the spermine pool in the induced SSAT cells was fluorine-labeled compared with only 12% in uninduced cells. Thus, SSAT induction increased metabolic flux by approximately 5-fold. Flux could be interrupted by inhibition of polyamine biosynthesis but not by inhibition of polyamine oxidation. Overall, the findings are consistent with a paradigm whereby flux is initiated by SSAT acetylation of spermine and particularly spermidine followed by a marked increase in key biosynthetic enzymes. The latter sustains the flux cycle by providing a constant supply of polyamines for subsequent acetylation by SSAT. The broader metabolic implications of this futile metabolic cycling are discussed in detail.  相似文献   

16.
Properties of a mutant form of spermidine/spermine N(1)-acetyltransferase, L156F (L156F-SSAT), that is present in Chinese hamster ovary cells selected for resistance to the polyamine analogue N(1,) N(11)-bis(ethyl)norspermine (BE 3-3-3) were investigated. Increased K(m) values, decreased V(max) values, and decreased k(cat) values with both polyamine substrates, spermidine and spermine, indicated that L156F-SSAT is an inferior and less efficient acetyltransferase than wild-type SSAT. Transfection of L156F-SSAT into C55.7Res cells indicated that cellular SSAT activity per nanogram of SSAT protein correlated well with the in vitro data and was also approximately 20-fold less for the mutant protein than for wild-type SSAT. Increased expression of L156F-SSAT was unable to restore cellular sensitivity to BE 3-3-3 despite providing measurable basal SSAT activity. Only a 4-fold induction of L156F-SSAT activity resulted from the exposure of cells to the polyamine analogue, whereas wild-type SSAT was induced approximately 300-fold. Degradation studies indicated that BE 3-3-3 cannot prevent ubiquitination of L156F-SSAT and is therefore unable to protect the mutant protein from degradation. These studies indicate that the decreased cellular sensitivity to BE 3-3-3 is caused by the lack of SSAT activity induction in the presence of the analogue due to its inability to prevent the rapid degradation of the L156F-SSAT protein.  相似文献   

17.
Depletion of intracellular polyamine pools invariably inhibits cell growth. Although this is usually accomplished by inhibiting polyamine biosynthesis, we reasoned that this might be more effectively achieved by activation of polyamine catabolism at the level of spermidine/spermine N(1)-acetyltransferase (SSAT); a strategy first validated in MCF-7 breast carcinoma cells. We now examine the possibility that, due to unique aspects of polyamine homeostasis in the prostate gland, tumor cells derived from it may be particularly sensitive to activated polyamine catabolism. Thus, SSAT was conditionally overexpressed in LNCaP prostate carcinoma cells via a tetracycline-regulatable (Tet-off) system. Tetracycline removal resulted in a rapid approximately 10-fold increase in SSAT mRNA and an increase of approximately 20-fold in enzyme activity. SSAT products N(1)-acetylspermidine, N(1)-acetylspermine, and N(1),N(12)-diacetylspermine accumulated intracellularly and extracellularly. SSAT induction also led to a growth inhibition that was not accompanied by polyamine pool depletion as it was in MCF-7 cells. Rather, intracellular spermidine and spermine pools were maintained at or above control levels by a robust compensatory increase in ornithine decarboxylase and S-adenosylmethionine decarboxylase activities. This, in turn, gave rise to a high rate of metabolic flux through both the biosynthetic and catabolic arms of polyamine metabolism. Treatment with the biosynthesis inhibitor alpha-difluoromethylornithine during tetracycline removal interrupted flux and prevented growth inhibition. Thus, flux-induced growth inhibition appears to derive from overaccumulation of metabolic products and/or from depletion of metabolic precursors. Metabolic effects that were not excluded as possible contributing factors include high levels of putrescine and acetylated polyamines, a 50% reduction in S-adenosylmethionine, and a 45% decline in the SSAT cofactor acetyl-CoA. Overall, the study demonstrates that activation of polyamine catabolism in LNCaP cells elicits a compensatory increase in polyamine biosynthesis and downstream metabolic events that culminate in growth inhibition.  相似文献   

18.
We have been investigating the effects of natural polyamines and polyamine analogues on the survival and apoptosis of chondrocytes, which are cells critical for cartilage integrity. Treatment of human C‐28/I2 chondrocytes with N1,N11‐diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, rapidly induced spermidine/spermine N1‐acetyltransferase (SSAT) and spermine oxidase (SMO), key enzymes of polyamine catabolism and down‐regulated ornithine decarboxylase, the first enzyme of polyamine biosynthesis, thus depleting all main polyamines within 24 h. The treatment with DENSPM did not provoke cell death and caspase activation when given alone for 24 h, but caused a caspase‐3 and ‐9 dependent apoptosis in chondrocytes further exposed to cycloheximide (CHX). In other cellular models, enhanced polyamine catabolism or polyamine depletion has been implicated as mechanisms involved in DENSPM‐related apoptosis. However, the simultaneous addition of DENSPM and CHX rapidly increased caspase activity in C‐28/I2 cells in the absence of SSAT and SMO induction or significant reduction of polyamine levels. Moreover, caspase activation induced by DENSPM plus CHX was not prevented by a N1‐acetylpolyamine oxidase (PAO)/SMO inhibitor, and depletion of all polyamines obtained by specific inhibitors of polyamine biosynthesis did not reproduce DENSPM effects in the presence of CHX. DENSPM/CHX‐induced apoptosis was associated with changes in the amount or activation of signalling kinases, Akt and MAPKs, and increased uptake of DENSPM. In conclusion, the results suggest that DENSPM can favour apoptosis in chondrocytes independently of its effects on polyamine metabolism and levels. J. Cell. Physiol. 219: 109–116, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
N 1,N 4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527) was considered to be a selective inactivator of FAD-dependent tissue polyamine oxidase. Recently MDL 72527 was reported to induce apoptosis in transformed hematopoietic cells through lysosomotropic effects. Since it is the only useful inhibitor of polyamine oxidase available at present, the re-evaluation of its properties seemed important. Human colon carcinoma-derived SW480 cells and their lymph node metastatic derivatives (SW620) were chosen for our study because they differ in various aspects of polyamine metabolism but have similar polyamine oxidase activities. MDL 72527 inhibited cell growth in a concentration-dependent manner, depleted intracellular polyamine pools, and caused the accumulation of N 1-acetyl derivatives of spermidine and spermine. SW620 cells were more sensitive to the drug than were SW480 cells. At 150 μmol/L MDL 72527, SW620 cells accumulated in S-phase of the cell cycle, showed decreased polyamine transport rate, and showed no increase of polyamine N 1-acetyltransferase activity. In contrast, SW480 cells were not arrested in a particular phase of the cell cycle, showed enhanced polyamine uptake, and showed a mild induction of acetyltransferase. The results suggest that MDL 72527 retains its value as a selective tool in short-term experiments only at concentrations not exceeding those necessary for the inactivation of polyamine oxidase. At concentrations above 50 μmol/L and at exposure times longer than 24 h, it may derange cell functions nonspecifically, and thus blur the results of studies intended to elucidate polyamine oxidase functions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号