首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secondary structure formed in disulfide reduced alpha-lactalbumin is investigated by CD spectrum and is compared with that of the folding intermediate of the disulfide intact protein. The peptide backbone structure of the reduced protein depends strongly on salt concentration in contrast to that of the intermediate. It is close to a random coil in the absence of salt, but it is almost the same as that of the intermediate at a high concentration of salt. The secondary structures of both the proteins undergo broad unfolding transitions when temperature is raised or when urea is added. The secondary structure of the reduced protein is less stable against both heat and urea. These results show that the disulfide bonds are not a determinant of the secondary structure formed at an early stage of folding, and they stabilize the secondary structure of the folding intermediate.  相似文献   

2.
A peptide, N‐Ac‐Phe‐Tyr‐NH2, with angiotensin I‐converting enzyme (ACE) inhibitor activity was synthesized by an α‐chymotrypsin‐catalyzed condensation reaction of N‐acetyl phenylalanine ethyl ester (N‐Ac‐Phe‐OEt) and tyrosinamide (Tyr‐NH2). Three kinds of solvents: a Tris–HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic‐aqueous solvent (Tris‐HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N‐Ac‐Phe‐Tyr‐NH2 could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N‐Ac‐Phe‐Tyr‐NH2, so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

3.
Bruton's tyrosine kinase (BTK) plays an important role in B cell development. Deletion of C-terminal 14 amino acids of the SH3 domain of BTK results in X-linked agammaglobulinemia (XLA), an inherited disease. We report here on the stability and folding of SH3 domain of BTK. Peptides corresponding to residues 216–273 (58 residues) and 216–259 (44 residues) of BTK SH3 domain were synthesized by solid phase methods; the first peptide constitutes the entire SH3 domain of BTK while the latter peptide lacks 14 amino acid residues of the C-terminal. The 58 amino acid peptide forms mainly a β-barrel type folding unit. Although small and lacking disulfide bonds, this peptide is extremely stable to thermal denaturation. Based on circular dichroism measurements, its melting temperature was found to be high, 82°C at pH 6.0. However, the Gibbs free energy (ΔG) of the intrinsic stability and thermodynamic spontaneity of unfolding were found to be low, 2.6 kcal/mol by Gdn·HCl denaturation experiments, as compared to 12 kcal/mol obtained for larger single domain proteins, indicating poor stability of SH3 domain. Addition of 500 mM of Na2SO4 increased the free energy change ΔG to 4.0 kcal/mol, suggesting an ionic strength effect. The truncated peptide fails to fold correctly and adopts random coil conformation in contrast to 58 amino acid β-barrel peptide, which exhibits high thermal stability but normal or low stability at ambient temperature. These results, to our knowledge the first to delineate the importance of C-terminal in structural integrity of SH3 domains, indicate also that improper folding and/or poor stability of mutant SH3 domain in BTK likely causes XLA. Proteins 28:465–471 © 1996 Wiley-Liss, Inc.  相似文献   

4.
Almost all therapeutic proteins and most extracellular proteins contain disulfide bonds. The production of these proteins in bacteria or in vitro is challenging due to the need to form the correctly matched disulfide bonds during folding. One important parameter for efficient in vitro folding is the composition of the redox buffer, a mixture of a small molecule thiol and small molecule disulfide. The effects of different redox buffers on protein folding, however, have received limited attention. The oxidative folding of denatured reduced lysozyme was followed in the presence of redox buffers containing varying concentrations of five different aromatic thiols or the traditional aliphatic thiol glutathione (GSH). Aromatic thiols eliminated the lag phase at low disulfide concentrations, increased the folding rate constant up to 11-fold, and improved the yield of active protein relative to GSH. The yield of active protein was similar for four of the five aromatic thiols and for glutathione at pH 7 as well as for glutathione at pH 8.2. At pH 6 the positively charged aromatic thiol provided a higher yield than the negatively charged thiols.  相似文献   

5.
Apamin is an 18-residue bee venom peptide with the sequence CNCKAPETALCARRCQQH-amide and contains 2 disulfide bonds connecting C-1 to C-11 and C-3 to C-15. In the folding of reduced, unfolded apamin to native apamin with two disulfide bonds, the one-disulfide folding intermediate states are not populated to significant levels. To study the properties of the one-disulfide intermediates, we have synthesized two peptide models to mimic the one-disulfide intermediates, Apa-1 and Apa-2, in which two cysteines in the sequence have been replaced by alanines. These peptides can form only one of the native disulfide bonds, C-1 to C-11 in the case of Apa-1 and C-3 to C-15 in the case of Apa-2. The stabilities of these disulfide bonds have been measured as a function of pH, concentration of urea, and temperature, in order to understand which contributions stabilize the disulfide-bonded structures. Using oxidized and reduced glutathione, the equilibrium constants for forming the disulfide bonds at 25 degrees C and pH 7.0 are 0.018 M for Apa-1 and 0.033 M for Apa-2 and show little dependence on pH or temperature. Both disulfide bonds are destabilized slightly (by approximately a factor of 2) between 0 and 8 M urea. Circular dichroism spectra indicate that although both Apa-1 and Apa-2 exhibit some structure, Apa-2 exhibits more than Apa-1. The results suggest that in the folding of apamin, the one-disulfide intermediate containing the C-3 to C-15 disulfide bond, as in Apa-2, is favored slightly. Secondary structure provides modest stabilization to this intermediate.  相似文献   

6.
La1 is a 73‐residue cysteine‐rich peptide isolated from the scorpion Liocheles australasiae venom. Although La1 is the most abundant peptide in the venom, its biological function remains unknown. Here, we describe a method for efficient chemical synthesis of La1 using the native chemical ligation (NCL) strategy, in which three peptide components of less than 40 residues were sequentially ligated. The peptide thioester necessary for NCL was synthesized using an aromatic N‐acylurea approach with Fmoc‐SPPS. After completion of sequential NCL, disulfide bond formation was carried out using a dialysis method, in which the linear peptide dissolved in an acidic solution was dialyzed against a slightly alkaline buffer to obtain correctly folded La1. Next, we determined the disulfide bonding pattern of La1. Enzymatic and chemical digests of La1 without reduction of disulfide bonds were analyzed by liquid chromatography/mass spectrometry (LC/MS), which revealed two of four disulfide bond linkages. The remaining two linkages were assigned based on MS/MS analysis of a peptide fragment containing two disulfide bonds. Consequently, the disulfide bonding pattern of La1 was found to be similar to that of a von Willebrand factor type C (VWC) domain. To our knowledge, this is the first report of the experimental determination of the disulfide bonding pattern of peptides having a single VWC domain as well as their chemical synthesis. La1 synthesized in this study will be useful for investigation of its biological role in the venom. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Disulfide exchange folding of insulin-like growth factor I.   总被引:11,自引:0,他引:11  
The disulfide exchange folding properties of insulin-like growth factor I (IGF-I) have been analyzed in a redox buffer containing reduced (10 mM) and oxidized (1 mM) glutathione. Under these conditions, the 3 disulfide bridges of the 70 amino acid peptide were not quantitatively formed. Instead, five major forms of IGF-I were detected, and these components were concluded to be in equilibrium as their relative amounts were similar starting from either reduced, native, or a mismatched variant of IGF-I containing two non-native disulfides. The different components in the mixtures were trapped by thiol alkylation using vinylpyridine and subsequently isolated by reverse-phase HPLC. The purified variants were further characterized using plasma desorption mass spectrometry and peptide mapping. Two of the five different forms were identified as native and mismatched IGF-I. One form was a variant with only one disulfide bond, and the other two major components had two disulfides formed. In a separate experiment, early refolding intermediates were trapped by pyridylethylation after only 90 s of refolding in the glutathione buffer, starting from reduced IGF-I. The intermediates were identical to the components observed at equilibrium, but at different relative concentrations. On the basis of the disulfide bond patterns of the different components in the equilibrium mixtures, we conclude that the disulfide between cysteines-47 and -52 in IGF-I is an unfavorable high-energy bond that may exist in the native molecule in a strained configuration.  相似文献   

8.
Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti‐Leishmania activities. In the present study, the total syntheses of backbone‐cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)2,15]‐Gm (one disulfide bond) and [Thr2,6,11,15,d ‐Pro9]‐Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu1 and Arg16‐Glu‐Arg18‐NH2 on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60 °C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N‐terminal amino acid pGlu1 and the amidated C‐terminal tripeptide Arg16‐Glu‐Arg18‐NH2 play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr2,6,11,15,d ‐Pro9]‐Gm analogue remains the best active Gm‐derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
A relaxin‐like gonad‐stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B‐chain (21 aa), C‐peptide (47 aa), and A‐chain (24 aa). There are three putative processing sites (Lys‐Arg) between the B‐chain and C‐peptide, between the C‐peptide and A‐chain, and within the C‐peptide. This structural organization revealed that the mature AscRGP is composed of A‐ and B‐chains with two interchain disulfide bonds and one intrachain disulfide bond. The C‐terminal residues of the B‐chain are Gln‐Gly‐Arg, which is a potential substrate for formation of an amidated C‐terminal Gln residue. Non‐amidated (AscRGP‐GR) and amidated (AscRGP‐NH2) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP‐GR and AscRGP‐NH2 induced oocyte maturation and ovulation in similar dose‐dependent manners. This is the first report on a C‐terminally amidated functional RGP. Collectively, these results suggest that AscRGP‐GR and AscRGP‐NH2 act as a natural gonadotropic hormone in A. scoparius.  相似文献   

10.
The optimal conditions were determined for oxidative folding of the reduced human α-defensins, HNP1, HNP2, HNP3 and HD5, preferentially into their native disulfide structures. Since the human α-defensin-molecule in both reduced and oxidized forms raised a solubility problem arising from its basic and hydrophobic compositions, buffer concentration had to be lowered and cosolvent, such as CH3CN, had to be added to the folding medium in the presence of reduced and oxidized gluthathione (GSH/GSSG) to prevent aggregation and also to realize predominant formation of the native conformer. The four synthetic human α-defensins of high homogeneity were confirmed to exhibit the same antimicrobial potencies against E. coli as those reported for the natural products. All these peptides were shown to possess the native disulfide structure by sequence analyses and mass measurements with cystine segments obtained by enzymatic digestion. Edman degradation allowed for disulfide assignment of cystine segments involving adjacent Cys residues composed of three peptide chains, for which two possible disulfide modes could be considered, with the guidance of the cycles detecting diPTH cystine. As for HNP1, HNP2 and HNP3, however, diPTH cystine was expected at the same cycles in both structures, which would have resulted in not being able to distinguish between the two alternative modes. To avoid this, it was necessary to provide an acetyl tag for the specific peptide chain originating from the N-terminus. Edman degradation of cystine segments tagged with the acetyl group would be a practical procedure for analyzing disulfide structures involving adjacent Cys residues.  相似文献   

11.
The capability of the cysteine proteases ficin, papain and clostripain to form peptide bonds in frozen aqueous solutions was investigated. Freezing the reaction mixture resulted in increased peptide yields in kinetically controlled coupling of Bz–Arg–OEt with various amino acid amides and dipeptides. Under these conditions, peptide yields increased up to 70% depending on the enzyme and the amino component used. Enzyme-catalysed peptide syntheses were carried out under optimized reaction conditions (temperature, amino component concentration and pH before freezing) using the condensation of Bz–Arg–OEt and H–Leu–NH2 as a model reaction.  相似文献   

12.
The ammonia/ammonium (NH3/NH 4 + ) influx into red blood cells (RBCs) is mediated by surface glycoprotein RhAG that forms a structural complex with anion exchanger 1 (AE1, band 3). Owing to the activity of this complex, RBCs exposed to the isosmotic ammonium buffer swell and finally lyse. Isoosmotic NH 4 + -containing media alters the pH gradient in RBCs (intracellular alkalosis in response to NH3/NH 4 + influx) and triggers the AE1 activity resulting in redundant chloride and water influx and finally in cell swelling. Here we demonstrate that the ammonia/ammonium transport in human RBCs depends on the pH (pH optimum 7.4 ± 0.1), temperature (Q10 2.6 ± 0.3), HCO 3 ? concentration (EC50 4.7 ± 0.3 mM), and AE1 function. The data confirm functional interactions between AE1 and RhAG. The initial velocity of cell swelling increased almost 50-fold in the isosmotic ammonium buffer containing 25 mM HCO 3 ? (37°C) in comparison to the reaction in the same buffer without HCO 3 ? . This indicates that the reaction is facilitated mostly by the carrier proteins, not just owing to the simple diffusion of NH3 across the erythrocyte membrane. We demonstrate that pHi reaches its maximum value much faster than the volume increase does. These data suggest that there is no direct correlation between pHi changes and the influx of NH3/NH 4 + . Taken together, our data show that the RhAG and AE1 complex activity enables erythrocytes to be ammonia/ammonium storage sites in order to maintain the physiological blood ammonia/ammonium equilibrium.  相似文献   

13.
The effect of an aqueous/organic interface on the folding and aggregation of amphipathic peptides is examined by applying discontinuous molecular dynamics (DMD) simulations combined with an intermediate resolution protein model, PRIME20, to a peptide/interface system. The systems contain 48 (KLLK)4 peptides in random coil or α-helical conformations interacting with both strong and weak interfaces. In the absence of an interface, most of the oligomers form helical bundles, a small fraction of which convert to β-sheets when the temperature is above the folding transition. Adding a weak interface decreases oligomer formation above the folding temperature and increases it below. Little monolayer formation is observed at the weak interface; instead reversible adsorption increases the local peptide concentration near the interface, promoting helical bundle formation in the aqueous phase below the folding temperature and β-sheet formation above the folding temperature. Introducing a strong interface leads to irreversible adsorption, promoting formation of helical monolayers below the folding temperature and mixed β-sheet/amorphous monolayers above the folding temperature. The (KLLK)4 peptide is more likely to adsorb to the interface when it is in an α-helical conformation, as opposed to a random coil, because of its larger hydrophobic moment.  相似文献   

14.
Folding of the nascent peptide chain into a biologically active protein   总被引:10,自引:0,他引:10  
C L Tsou 《Biochemistry》1988,27(6):1809-1812
The refolding of denatured proteins with complete sequences may not be fast enough to account for the in vivo folding of growing peptide chains during biosynthesis. As some peptide fragments have secondary structures not unlike those of the corresponding segments in the intact molecules and native disulfide bonds of some proteins can form cotranslationally, it is suggested that the folding of the nascent chain begins early during synthesis. However, further adjustments may be necessary during chain elongation and after posttranslational modifications of the completed peptide chain to generate the native conformation of a biologically active protein.  相似文献   

15.
Yang  Hong  Zhang  Yueqi  Li  Xinxin  Bai  Yingguo  Xia  Wei  Ma  Rui  Luo  Huiying  Shi  Pengjun  Yao  Bin 《Applied microbiology and biotechnology》2018,102(21):9183-9192

A new cellulase (TaCel45) of glycoside hydrolase family 45 was identified in the thermophilic fungus Thielavia arenaria XZ7 and was successfully expressed in Pichia pastoris. The specific activities of TaCel45 towards lichenin, sodium carboxymethylcellulose (CMC-Na), and barley β-glucan were 769, 498, and 486 U/mg protein, respectively, which are higher than the values for all other reported GH45 cellulases. TaCel45 had maximum activity at pH 5.0–6.0 and 60–65 °C with barley β-glucan and CMC-Na as substrates and had a melting temperature (Tm) of 68.4 °C. However, TaCel45 exhibited extraordinary thermostability at 90 and 100 °C, retaining more than 70 and 45% of its activity after a 1-h incubation, respectively. Seven mutants (C11S, C12S, C16S, C31S, C171S, C193S, and C203S) were then constructed to investigate the effects of each disulfide bond on the structure, activity, and stability of TaCel45. As a result, six disulfide bonds (C11-C136, C16-C87, C31-C57, C88-C203, C90-C193, and C160-Cy171) were found to be indispensable for the folding, secretion, and activity of TaCel45, while C12-C48 was critical for thermal adaptation and refolding. The mutant C12S showed decreased optimal temperature and Tm values of 50 and 60.2 °C, respectively, and retained less than 50% of the thermal refolding ability of the wild type. Overall, this study demonstrated that disulfide bonds play a vital role in the folding and refolding capability and thermostability of this GH45 cellulase.

  相似文献   

16.
A simple method was developed for the controlled cleavage of protein disulfide bonds and the simultaneous blockage of the free sulfhydryl groups in the absence of a denaturant. The disulfide bonds of bovine serum albumin were cleaved unsymmetrically at pH 7.0 using 0.1 M sulfite in 0.1 M phosphate buffer and the free sulfhydryl groups formed were sulfonated in an oxidation-reduction cycle using molecular oxygen and 400 microM cupric sulfate as a catalyst. The reaction was affected by cupric ion concentration, sulfite concentration, reaction pH and temperature. The standardized method was successfully used to cleave the disulfide bonds of other proteins pepsin, trypsin, and chymotrypsin. The method is reliable and can be used for achieving progressive cleavage of disulfide bonds in proteins without employing a denaturant.  相似文献   

17.
alpha-Conotoxin ImI is a 12-amino acid peptide, found in the venom of the marine snail Conus imperialis. This conotoxin is a selective antagonist of alpha7 nicotinic acetylcholine receptors. To produce biologically active alpha-ImI, disulfide bonds must be formed between Cys2-Cys8 and Cys3-Cys12. Oxidative folding of bicyclic conotoxins, such as alpha-ImI, has been traditionally achieved using two-step oxidation protocols with orthogonal protection on two native pairs of cysteines. In this work, two alternative oxidation protocols were explored: (1) the recently described one-pot oxidation of t-butyl/4-methylbenzyl protected Cys pairs and (2) direct oxidative folding. In contrast to the first method, the latter one resulted in high yields of correctly folded alpha-ImI. The addition of organic cosolvents, such as methanol, ethanol or isopropanol into the folding mixture significantly increased the accumulation of the native peptide. This effect was also observed for another conotoxin, alpha-PnIA. It is suggested that cosolvent-assisted direct oxidation might be of general use for other bicyclic alpha-conotoxins, but efficiency should be assessed on a case-by-case basis.  相似文献   

18.
Chemical synthesis of kurtoxin, a T-type calcium channel blocker   总被引:1,自引:0,他引:1  
Kurtoxin isolated from the venom of scorpion, Parabuthus transvaalicus, is a 63-residue peptide with four intramolecular disulfide bonds which inhibits low-threshold T-type Ca2+channels. Kurtoxin was synthesized by native chemical ligation involving the coupling of (1--26)-thioester peptide and Cys27-(28--63)-peptide. The former was synthesized by standard solid-phase peptide synthesis (SPPS) with Boc chemistry, while the latter was sequentially assembled from three protected segments onto a resin-bound C-terminal segment in a chloroform--phenol mixed solvent followed by deprotection reaction using HF. Each protected segment used for the coupling on a solid support was prepared on an N-[9-(hydroxymethyl)-2-fluorenyl] succinamic acid (HMFS) resin and detached from the resin by treatment with 20% Et 3N in DMF to produce it in the form of an α-carboxylic acid. Synthetic kurtoxin obtained after the oxidative folding reaction was found to be identical with the natural product by means of several analytical procedures, and its disulfide structure was determined for the first time to be Cys12-Cys61, Cys16-Cys37, Cys23-Cys44 and Cys27-Cys46 by peptide mapping, sequence analysis and mass measurements.  相似文献   

19.
At low concentrations of a glutathione redox buffer, the protein disulfide isomerase (PDI) catalyzed oxidative renaturation of reduced ribonuclease A exhibits a rapid but incomplete activation of ribonuclease, which precedes the steady-state reaction. This behavior can be attributed to a GSSG-dependent partitioning of the substrate, reduced ribonuclease, between two classes of thiol/disulfide redox forms, those that can be converted to active ribonuclease at low concentrations of GSH and those that cannot. With catalytic concentrations of PDI and near stoichiometric concentrations of glutathione disulfide, approximately 4 equiv (2 equiv of ribonuclease disulfide) of GSH are formed very rapidly followed by a slower formation of GSH, which corresponds to an additional 2 disulfide bond equiv. The rapid formation of RNase disulfide bonds and the subsequent rearrangement of incorrect disulfide isomers to active RNase are both catalyzed by PDI. In the absence of GSSG or other oxidants, disulfide bond equivalents of PDI can be used to form disulfide bonds in RNase in a stoichiometric reaction. In the absence of a glutathione redox buffer, the rate of reduced ribonuclease regeneration increases markedly with increasing PDI concentrations below the equivalence point; however, PDI in excess over stoichiometric concentrations inhibits RNase regeneration.  相似文献   

20.
A family of Ib-AMP4 peptide analogues was obtained by solid phase synthesis, modifying the net charge and hydrophobicity of C-terminal domain by replacing certain amino acidic residues by arginine and tryptophan. Additionally, disulfide bonds were eliminated by replacing the cysteine residues by methionine, which resulted in a decrease in the number of synthesis byproducts, and consequently diminished the subsequent purification steps. The obtained peptides were purified by RP-HPLC and their molecular mass was determined by MALDI-TOF mass spectrometry. The peptide analogues (IC50 between 1 and 50 μM) presented a higher antibacterial activity against Escherichia coli K-12 than the native peptide (IC50 > 100 μM). The hemolytic activity of the peptide with the highest antibacterial efficacy presented no degradation of erythrocytes for a concentration of 1 μM that corresponds to its IC50 value. The results show that the synthesized peptides are good candidates for the treatment of diseases caused by E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号