首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The secondary structure of xanthan in solutions of relatively low salt concentration and at room temperature has been investigated using static light scattering experiments. Additional evidence has been found for a dimeric structure at 25°C in 0.01M NaCl. From the experimental z-average mean square (ms) radius of gyration, a value for the persistence length p has been estimated, taking explicitly into account the polydispersity of the three samples used, which has been established by gel permeation chromatography (GPC) measurements. The experimental particle scattering functions of the three samples are consistent with theoretical estimates for polydisperse systems with the same value of p = 65 ± 10 nm and the molar mass per unit length for a dimeric structure. This secondary structure remains unaffected by the ionic strength in the 0.005–0.0lM range. Partial aggregation seems to occur at higher NaCl concentrations. Light scattering and GPC data show that heating the xanthan 0.01M NaCl solutions to about 70°C considerably reduces the Mw of the low molar mass sample (2.3 × 105-g·mol?1), contrary to what is observed for the high molar mass sample (1.8 × 106-g·mol?1). These experimental findings can be accounted for by a partial temperature-induced dissociation of the xanthan dimers according to an all-or-none mechanism. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The angular dependence of scattered light from amylopectin and its β-limit dextrin, the mean square radius of gyration and the molecular weights Mw and Mn have been calculated on the basis of the cascade branching theory for the homogeneously branched model by Meyer &; Bernfeld (1940) (Model I) and for the two heterogeneously branched structures suggested by French (1972) (Model II) and by Robin et al. (1974, 1975) (Model III). The calculations take into account the particularities of topology in branched molecules and the experimentally determined ratio of the number of A- and B-chains, A/B = 1. Furthermore, an average branching density of 4% and an interconnecting chain length of ovbar|ni2 = 22, found by gel permeation chromatography (GPC) after debranching, were used. The constraints lead to the conclusion that amylopectin is heterogeneously branched. Densely branched clusters containing 3·22 branching units are interconnected by longer chains of 22 units in length. Comparison of the calculated angular dependence of light scattering with measurements from a maize amylopectin β-limit dextrin in 1 n NaOH solution gives strong evidence for a modified Robin-Mercier model. The modification consists of the conclusion that the interconnecting chains are preferentially B-chains, such that these chains carry on the average 1·4 clusters, while Robin and Mercier assume exactly 2 clusters. Our result is in agreement with the distribution of chain length found after debranching the amylopectin β-limit dextrin.  相似文献   

3.
A laboratory-made sample of the polysaccharide xylinan (acetan) has been further characterized with respect to (i) purity, (ii) molar mass and polydispersity, and (iii) gross conformation by a combination of hydrodynamic measurements (sedimentation velocity and equilibrium analytical ultracentrifugation, viscometry, and dynamic light scattering) in aqueous NaCl (I = 0.10 mol·L−1). Sedimentation velocity diagrams recorded using Schlieren optics revealed highly pure material sedimenting as a single boundary [so20.w = 9.5 ± 0.7) S; ks = (273 ± 112) mL/g]. The hypersharp nature of these boundaries is symptomatic of a polydisperse and highly nonideal (in the thermodynamic sense) system. Low speed sedimentation equilibrium in the analytical ultracentrifuge using Rayleigh interference optics and two different types of extrapolation procedure (involving point and whole-cell molar masses) gave a weight average molar mass Mw of (2.5 ± 0.5) × 10−6 g·mol−1 and also a second virial coefficient, B = (2.8 ± 0.7) × 10−4 mL·mol·g−2, both values in good agreement with those from light scattering-based procedures (Part II of this series). A dynamic Zimm plot from dynamic light scattering measurements gave a z-average translational diffusion coefficient Do20.w = (3.02 ± 0.05) × 10−8 cm2·s−1 and the concentration-dependence parameter kD = (370 ± 15) mL/g. Combination of so20.w with Do20.w via the Svedberg equation gave another estimate for Mw of ≅ 2.4 × 106 g/mol, again in good agreement. Both the Wales-van Holde ratio (ks/[η]) ≅ 0.4 (with [η] = (760 ± 77) mL/g) and the ρ-parameter (ratio of the radius of gyration from static light scattering to the hydrodynamic radius from dynamic light scattering) as ρ > 2.0 all indicate an extended conformation for the macromolecules in solution. These findings, plus Rinde-type simulations of the sedimentation equilibrium data are all consistent with the interpretation in terms of a unimodal wormlike coil model performed earlier. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Poly(γ-benzyl-L -glutamate) having a terminal dimethylaminoanilide group as an electron donor (D) and a terminal 3,5-dinitrobenzoyl group as an electron acceptor (A) (A-[Glu(OBzl)]n-D) was synthesized by the N-carboxyanhydride method. Polymer samples were fractionated by gel chromatography and their number-average degrees of polymerization n were determined by the absorbances of the terminal chromophores. These polymers in chloroform and dimethylformamide solutions showed a charge-transfer (CT) absorption band around 455 nm, and the fraction of the polymer forming the CT complex was evaluated as a function of the chain length. CT absorption for short chains (n = 5 ~ 20) was attributed to intramolecular CT complex in which the A-[Glu(OBzl)]n-D chain takes cyclic conformations. An optimum chain length for the intramolecular CT was found to be n ? 10, where the [Glu(OBzl)]n chain may most easily bend back to form cyclic conformations. Stronger CT absorption observed for longer chains than n = 20 was shown to be intermolecular, and an intermolecular head-to-tail aggregation was found to be a cause of the strong CT interaction. All helical A-[Glu(OBzl)]n-D chains were found to form the head-to-tail dimers in chloroform solution.  相似文献   

5.
Light scattering from wormlike chains with excluded volume effects   总被引:4,自引:0,他引:4  
P Sharp  V A Bloomfield 《Biopolymers》1968,6(8):1201-1211
This paper reports a calculation of the angular dependence of light scattering from wormlike chains with excluded volume effects. The Daniels distribution function, modified for excluded volume effects, is used to compute averages for scattering elements separated by contour lengths which are long with respect to the persistence length of the chain. An expansion in terms of exactly known moments of the distribution for the wormlike coil without excluded volume is used for short contour lengths. The results are applied to scattering from calf thymus (M = 18.1 × 106) and T7 (M = 25.4 × 106) DNA. It is demonstrated that the same values of excluded volume parameter (ε = 0.11) and statistical segment length (1/λ′ = 900 Å) which explain the sedimentation and viscosity behavior of DNA also account satisfactorily for the scattering behavior. Molecular weights and root-mean-square radii estimated by extrapolation from scattering data obtained in the angular region from 10° to 25° will be 5–10% too large for DNA of molecular weight 20 × 106–30 × 106.  相似文献   

6.
M. Fujii  K. Honda  H. Fujita 《Biopolymers》1973,12(5):1177-1195
Measurements of light scatting, sedimentation equilibrium, sedimentation velocity, and viscosity were carried out on fractions of native amylose in dimethylsulfoxide at 25°C. The data for statistical radius as a function of weight-average molecular weight Mw suggested a stiff nature of this biopolymer in the solvent studied when interpreted in terms of Kirste's recent calculations with a stiff chain model. The data for sedimentation coefficient were consistent with this suggestion, and when analyzed in terms of the theory Hearst and Stockmayer for wormlike chain, a value of 233 Å2 was obtainedd for a/λ, where a is the length of a monomer unit projected on the chain axis and (2λ)?1is the persistence length of the wormlike chain. The intrinsic viscosity data gave a high a value as 0.91 for the exoponent in the Houwink-Mark-Sakuarada equation, in Substantial agreement with Cowie's prenious work. We attempted to interpret these data by use of the Eizner-Ptitsyn equation for wormlike chains, with omission of the free-drainage term and introduction of the a/λ value obtained from sedimentation data. It was found that, except in the region of Mw above one million, the observed values were fitted well by the E-P theory with a = 1.4 Å and (2λ)?1 = 87 Å. The disagreement in the high-molecular-weight region was tentatively attributed to excluded volume effect. The a value obtained suggests that the molecular conformation of amylose in dimethylsulfoxide is predominantly helical, in contrast to that of the same polymer in aqueous solutions of simple electrolyte. It was also found that a similar value of a was derived from our data for the second virial coefficient and partial specific volume if the molecule was assumed to be essentially rodlike.  相似文献   

7.
Laboratory-made samples of the polysaccharide xylinan, also called acetan, were studied in aqueous solution at various ionic strengths I (0.01 mol/L ≤ I ≤ 0.30 mol/L). The conditions for clarification (ultracentrifugation/membrane filtration) were studied. The Zimm procedure was used to obtain the average molar mass, the second virial coefficient, and the radius of gyration. The interpretation of the angular dependence of scattered light by fitting with “Master Curves” led to double-stranded wormlike chains with persistence lengths between 90 and 120 nm. The ionic strength had a strong effect on the thermodynamic second virial coefficient, but the overall structure remained unchanged. The ambiguity of the light scattering data was discussed assuming alternatively a two-component system instead of the wormlike chain model for the experimental scattering curves. The two-component system can be ruled out on the basis of model calculations. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The dependence on chain length of two characteristic properties of amylose, i.e., retrogradation and complex formation with iodine, have been studied by using enzymatically synthesized, homodisperse amyloses. The association rates of amyloses in water containing 5% dimethyl sulfoxide have a sharp maximum at a degree of polymerization P?n of 80; shorter and longer molecules are much more soluble. The iodine complexes of amylose exhibit a strong Cotton effect in the range of the long-wave absorption maximum (position depending on chain length) and two weaker Cotton effects at 480 and 350 nm. The long-wave Cotton effect is most intense at about P?n 50 and decreases rapidly for shorter and longer chains. This behavior is unexpected and is not in accordance with the further increase of λmax and λmax. The experiments can best be interpreted by assuming well ordered, stiff chains in the low molecular weight range (P?n 50–80). For longer chains, the findings are discussed in the light of current concepts of amylose conformation in aqueous solution, namely the model of the broken helical chain (alternating stiff helical segments and unordered regions) and the model of a flexible coil without a significant helical content. However, according to the results given in this paper, a wormlike helical chain seems to be the most adequate model for amylose conformation in neutral solution.  相似文献   

9.
A Monte Carlo procedure was used to determine the effect of excluded volume on the conformational dimensions of amylosic chains. The excluded volume was introduced into the model by assuming that hard spheres, which cannot overlap each other, exist at the center of mass of each glucose unit in the chain sequence. Monte Carlo chains, which were generated to be distributed consistent with the potential energy of nonbonded nearest-neighbor interactions, underwent self-intersections, and the attrition rate in the generation of self-avoiding chains was found to obey an exponential decay law with increasing chain length x. Thus, in order to generate effectively a large number of self-avoiding chains with long sequences, we used the Wall–Erpenbeck s-p method of chain enrichment [F. T. Wall and J. J. Erpenbeck (1959) J. Chem. Phys. 30 , 634–637]. By examination of the radial distribution of the end-to-end distance and the chain-length dependence of the quantity 〈r2〉/xl2 (〈r2〉 is the mean square end-to-end distance and l is the virtual bond length), it was found that unperturbed amylosic chains change in overall conformation from a non-Gaussian chain having a helical character to Gaussian as x is increased, whereas perturbed chains do not show Gaussian behavior even at x = 500. For the perturbed chains, 〈r2〉 can be expressed by the equation 〈r2〉 = axb in the range of 100 ≤ x ≤ 500, where a and b > 1 are constants. From comparisons of the persistence vectors and perspective drawings of representative unperturbed and perturbed chains, we felt the local conformation of the amylosic chains, i.e., the local helical character, is also affected by the long-range excluded-volume interaction.  相似文献   

10.
G Cohen  H Eisenberg 《Biopolymers》1966,4(4):429-440
Solutions of calf thymus NaDNA in 0.2M NaCl and CsDNA in 0.2M CsCl (fragmented by sonic irradiation to a molecular weight of about 5 × 105) were examined by electron microscopy, light scattering, and viscosity measurements. Electron microscopy showed that the molecular fragments are rodlike in shape and that the distribution of their lengths is sharp (Lw/Ln ~ 1.06). The weight-average number of nucleotides Zw per DNA molecule derived from light scattering was found to be in very good agreement with the value Lw derived from electron microscopy. The z-average length Lz derived from light scattering at 25°C. was found to be about 89% of the corresponding value derived by electron microscopy. Similarly, the value of Lw derived from intrinsic viscosity at 25°C. on the basis of a rodlike model was found to be about 87% of the corresponding value derived by electron microscopy. It is concluded that the molecules are slightly flexible and do not, assume their full contour length in solution because of the disorienting effect of Brownian motion. The intrinsie viscosity was found to increase linearly with decreasing temperature toward a limiting value corresponding to the fully stretched length of the macromolecules at 0°K.: a reasonable value for the modulus of elasticity could be calculated. It was also found that, no differences in conformation could be delected in t he two systems CsDNA-0.2M CsCl and NaDNA-0.2M NaCl.  相似文献   

11.
Six samples of Na xanthan in 0.01M aqueous NaCl containing 0.01 N HCl (pH = 2) were studied by light scattering and viscosity. This study was motivated by the finding that the intrinsic viscosity [η] fairly sharply decreased when the pH of the solvent was lowered from about 6 to 2 by adding HCl to 0.01M aqueous NaCl in which Na xanthan dissolves as rigid dimers having a double-helical structure. The data for weight-average molecular weight, radius of gyration, and [η] showed that Na xanthan at pH = 2 remains a dimer behaving as a semiflexible chain. Data analysis in terms of known theories for unperturbed wormlike chains yielded 0.47 ± 0.02, 2.0 ± 0.6, and 68 ± 7 nm for the contour length h per main-chain residue, diameter d, and persistence length q of the dimer, respectively. these h and d values agreed with the pitch per main-chain residue and the diameter of the double helix of Na xanthan in 0.01 or 0.1M aqueous NaCl. However, the q value, which was close to the intrinsic persistence length q0 ( = q in the absence of electrostatic interaction) of Na xanthan at pH = 2, was much smaller than the q0 (106 nm) of this helix. We concluded that the xanthan dimer at pH = 2 assumes a double-helical structure, which is geometrically the same as, but is more flexible than, that at neutral pH.  相似文献   

12.
Various molecular parameters, which characterize sodium hyaluronate in 0.2M NaCl solution, were obtained at 25°C by means of the static and dynamic light scattering and low shear viscometry over the molecular weight range of 5.94–627 × 104. Molecular weight distribution was obtained by using the Laplace inversion method of the autocorrelation function of the scattered light intensity and by Yamakawa theory for the wormlike chain with the stiff chain parameters for sodium hyaluronate in 0.2M NaCl (persistence length, chain diameter, molar mass per unit contour length, and the excluded‐volume strength). The molecular weight distribution thus obtained reproduced the solution properties of sodium hyaluronate well. Especially, the intrinsic viscosity showed a good agreement over four orders of molecular weight with Yamakawa theory combined with the Barrett function. Sodium hyaluronate in 0.2M NaCl solution is well expressed by the wormlike chain model affected by the excluded‐volume effect with the persistence length of 4.2 nm. © 1999 John Wiley & Sons, Inc. Biopoly 50: 87–98, 1999  相似文献   

13.
We show that the persistence length a of DNA, derived from total intensity laser light scattering of linear Col E1 DNA and corrected for excluded-volume effects, varies from about 68 nm in 0.005M NaCl to about 40 nm in 0.2M NaCl, leveling off to a constant value (about 27 nm) at high NaCl (1–4M) concentration. These observations do not agree with current views on the effect of electrostatic charge and ionic conditions on DNA dimensions. The apparent diffusion constant Dapp, determined from laser light scattering autocorrelation as a function of scattering vector q, at NaCl concentrations 0.005–4M, correctly yields the translational diffusion coefficient Dt at low values of q and scales with molecular dimensions rather than segment length at high values of q; thus, Dapp/Dt yields a universal curve when plotted against q2R, where Rg is the radius of the gyration. The sedimentation coefficients s at 0.1 and 0.2M NaCl concentration closely agree with the well-tested empirical relations, and a combination of s, Dt, and the appropriate density increments yield correct molar masses over the whole salt concentration range. Approximate constancy of DtRg indicates limited draining in translational flow. We present some observations and thoughts on the regimes in which a dependence of the correlation decay times on q3 rather than q2 applies. We conclude that quasielastic laser light scattering discloses little information about dynamics of internal motion of DNA chains.  相似文献   

14.
The ratfish,Callorhinchus callorhinchus, a representative of the Holocephali, has a natural serum hemagglutinin (M r 960 000), composed of heavy (M r 71000), light (M r 22 500), and J (M r 16 000) chains. To approach the mechanisms that generate diversity at this level of evolution, the amino terminal sequence of the heavy and light chains was determined by automated microsequencing. The chains are unblocked and have modest internal sequence heterogeneity. The heavy chains show sequence similarity with the terminal region of the heavy chain from the horned shark,Heterodontus francisci, and other species. In contrast to the heavy chain, the ratfish light chains display low sequence similarity with their shark kappa counterparts. However, their similarity with the variable region of the chicken lambda light chains is about 75%.  相似文献   

15.
Optical rotation data indicate that xanthan can exist both in an ordered and a disordered conformation. Using molecular weights obtained from light scattering measurements and contour length distributions obtained from electron micrographs, we find that a native, filtered xanthan exposed to low salinity (< 10?4M NaCl) and subsequently returned to 0.1M NaCl has a highly elongated structure with a mass per unit length of 1950 ± 200 Dalton/nm. Our data thus suggest that the ordered conformation of this xanthan is double stranded. We find that native, filtered xanthan in 0.1M NH4Ac has a nearly similar structure, but exists in part as aggregates of varying shape and size. Electron micrographs of these xanthans in 10?4M NH4Ac (the disordered conformation) display a mixture of species ranging from unaggregated single- or perfectly matched double-stranded species, to double-stranded chains branching into its two subunits as well as double-stranded chains with different degrees of mismatching. This study suggests that the perfectly matched antiparallel or parallel double-stranded chain constitutes the lowest free energy state of the ordered conformation of xanthan in dilute aqueous solution.  相似文献   

16.
Summary The rate of prenyl chain accumulation (C40 carotenoids; C45 in plastoquinone-9; C20 phytyl in chlorophylls, -tocopherol and vitamin K1) in plastids of etiolated radish seedlings (Raphanus sativus L.) is determined in continuous darkness and after far-red and white light treatment. Continuous far-red light (active phytochrome P fr ) stimulates the synthesis of all prenyl chains, but has no or only little effect on the dark pattern of the prenyl chain formation. White light enhances the accumulation of prenyl chains to a much higher degree than does far-red light. By a particularly strong promotion of the accumulation of phytyl chains, which are incorporated into chlorophyll, white light changes the percentage composition of prenyl chains to that of chloroplasts.  相似文献   

17.
The physical dimensions of several (1 → 6) branched (1 → 3) -β-D -glucan samples obtained from different organisms and their derivatives have been studied by electron microscopy, light scattering measurements, viscometry, and gel permeation chromatography. The electron micrographs indicate that in most samples these biopolymers are adequately described as linear worm-like coils. A sample reconstituted from alkaline media appeared as a blend of the linear, circular, and aggregated polymer morphologies. The average mass per unit length, ML = Mw/Lw for the macroscopically linear samples, was estimated to be 2100 ± 200 g mol?1 nm?1. The parameter mL was determined from the contour lengths obtained by electron microscopy and the molecular weight by light scattering measurements. The observed ML was consistent with the triple-helical structure reported from x-ray diffraction studies and observed degree of side-chain substitution. From the molecular snapshots shown in the electron micrographs, the persistence lengths of these β-D -glucans were determined to be 140 ± 30 nm. The experimentally determined intrinsic viscosities were consistent with these estimates of ML and persistence length. Comparison of the molecular weight distributions obtained from gel permeation chromatography and those deduced from the electron micrographs indicates that number and weight average contour lengths are more reliable than z and z + 1 averages. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Fractionated samples of sodium hyaluronate of low molecular weight were used to calibrate the carbazole method for glucuronyl analsis and to determine the density increment (based on dry weight) of 0.444 (±0.003) mL/g in water and 0.386 (±0.003) mL/g for samples dialyzed against 0.2M NaCl. Weight-average molecular weights obtained by high-speed sedimentation equilibrium were used to calibrate the limiting viscosity number [η] in 0.2M NaCl, which gave [η]/Mw = 0.0028 (±0.0002) mL/g, valid to Mw = 0.0028 (±0.0002) mL/g, valid to Mw = 105. Experimental data from this work and the literature, including viscosity and light- and small-angle x-ray scattering measurements, were compared to theoretical chain models of the Kratky-Porod (KP) wormlike and the helical wormlike (HW) chain, as treated by Yamakawa and collaborators. Although either model could be fitted to experimental data about equally well with consistent parameters, provided those for the HW chain were of weakly helical nature, calculation of the unperturbed meansquare end-to-end distance as a function of chain length from a conformational model favored the KP chain alternative. The parameters that provide the best fit to experimental data for the KP wormlike model are a persistence length of 4.5–5 nm and a diameter of 1.1 nm. The latter is resonable for a hydrated hydrodynamic cylinder in view of the approximate unhydrated value of 0.7 nm estimated from the density increment.  相似文献   

19.
N Mochizuki-Oda  S Fujime 《Biopolymers》1988,27(9):1389-1401
Synthetic myosin filaments of rabbit were prepared. Electron microscopy showed that the number-average length (Ln = 470 nm) and sharpness in length distribution (Lw/Ln = 1.036) were independent of ionic strengths of 134, 74, and 44 mM, whereas the number ratio of M-filaments (about 15 nm in diameter at the bare zone) to m-filaments (about 10 nm) strongly depended on ionic strength (IS); the major filaments were M-filaments at IS = 134 mM, m-filaments at IS = 74 mM, and almost exclusively m-filaments at IS = 44 mM. Dynamic light scattering showed that the change in diameter with the change in ionic strength by 2-h dialysis was reversible. Combination of dynamic light scattering and sedimentation studies suggested a dynamic equilibrium between M- and m-filaments. Dynamic light-scattering spectra at IS = 134 and 74 mM could be analyzed by a theory for rigid rods, whereas those at IS = 44 mM only by introducing semiflexibility of filaments; m-filaments are more flexible at IS = 44 than at 74 mM.  相似文献   

20.
The kinetics of prenyl chain formation (C20 phytyl in chlorophylls, vitamin KI and α-tocopherol; C40 carotenoids and C45 in plastoquinone-9) in plastids of etiolated Hordeum seedlings was compared in continuous darkness and after far-red and white light treatments:
  • 1 Continuous far-red (via phytochrome Pfr) enhances the synthesis rate of all prenyl chains, but does practically not change the dark pattern of prenyl chain accumulation. Free C20 phytyl chains could not be detected by means of thin layer chromatography.
  • 2 White light induces a much stronger enhancement of prenyl chain formation than does far-red. It also changes the pattern of prenyl chain synthesis by a particularly strong promotion of the synthesis of phytyl chains, which get bound to chlorophyll a. The rate of chlorophyllide formation seems to determine the rate of enhanced phytyl formation.
  • 3 It is assumed that the enzyme, which esterifies chlorophyllide a with the phytyl chain, is formed or activated by far-red treatment, but only starts working in white light, when the protochlorophyllide holochrome is re-arranged to the chlorophyllide holochrome.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号