首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pheromone biosynthesis activating neuropeptide (PBAN) stimulates sex pheromone production in several species of moths. We have used an antiserum to PBAN to map the distribution of PBAN-like immunoreactivity (PLI) in the subesophageal ganglion (SEG) of the larval and pupal stages of the corn earworm, Helicoverpa zea, and compared this distribution with that of the adult. The distribution of PLI within the SEG of larvae and pupae was quite similar to that found in adults, suggesting a function for PBAN other than the stimulation of pheromone biosynthesis. In all developmental stages studied, three groups of nerve cells in the SEG, and their projections, contained PLI. In adults and larvae, most of the cells containing PLI also had FMRFamide-like immunoreactivity (FLI). In pupae, however, a number of cells which appeared to have PLI and FLI in both larvae and adults, did not contain andy detectable FLI, while the PLI appeared unchanged. The FLI returns to these cells during adult development. These immunocytochemical observations were corroborated by quantifying PLI and FLI by competitive ELISA; the level of extractable FLI in pupae was about 25% of that found in larvae, while PLI levels were unchanged. © 1992 Wiley-Liss, Inc.  相似文献   

2.
The influence of peripheral connectivity on the survival and differentiation of Phe-Met-Arg-Phe-amide-like immunoreactive (FLI) neurons in the ventral ganglion (VG) of the fly Sarcophaga bullata (Diptera: Sarcophagidae) was examined. Isolated larval VG were cultured in vivo for 13 days. The ganglia had undergone metamorphosis and resembled in situ metamorphosed VG in morphology and in the number and location of FLI neurons. The 3 pairs of large thoracic FLI neurons survived and became translocated to the midventral position extending immunoreactive axons into the dorsal neuropil. The 5 pairs of small FLI neurons also appeared de novo in the abdominal ganglion. However, the dorsal neural sheath of the cultured VG was devoid of FMRFamide-like immunoreactivity that was so characteristic of adult VG, which suggests the importance of peripheral connectivity for the metamorphic modification of FLI neurons.  相似文献   

3.
Distribution of FMRFamide-like immunoreactivity was examined in the larval ventral nerve cord of the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera : Tortricidae). Indirect immunofluorescent methods revealed the existence of 3 groups of FLI neurons in each ganglion. The neurons are distributed in a bilaterally symmetrical fashion at the anterodorsal, midlateral and posteroventral regions of the ganglia. There are 4 FMRFamide-like immunoreactive fiber tracts on the dorsal surface of the ganglia to which the anterodorsal FLI neurons project ipsilaterally, while the midlateral pair projects both ipsi-, and contralaterally. The last abdominal ganglion (AG8) has 4 additional pairs of FLI neurons; and axons from some of these extend into the median abdominal nerve, which suggests some role for this neuropeptide in the control of posterior structures of the larva.  相似文献   

4.
The steroid hormone 20-hydroxyecdysone (20-HE) regulates several processes during insect metamorphosis. We studied the effects of 20-HE on the development of voltage-sensitive ionic currents of thoracic leg motoneurons of Manduca sexta. The larval leg motoneurons persist throughout metamorphosis but undergo substantial morphological reorganization, which is under the control of 20-HE and accompanied by changes in Ca2+ and K+ current densities. To determine whether 20-HE controls the changes in Ca2+ and K+ current levels during postembryonic development, identified thoracic leg motoneurons isolated from late larval and early pupal stages were taken into primary cell culture. Whole-cell Ca2+ and K+ currents were measured after 1–4 days of steroid hormone incubation. In the presence of 20-HE, peak Ca2+ currents of pupal leg motoneurons increased from day 1 to day 4 in vitro. Thus, at culture day 4 the pupal Ca2+ current levels were larger in 20-HE–treated than in untreated cells. By contrast, 20-HE did not affect the Ca2+ current amplitudes of larval leg motoneurons. Whole-cell K+ currents, measured at 4 days in pupal motoneurons, consisted of a fast-activating transient current and a sustained, slowly inactivating current. 20-HE did not affect the amplitude of the transient or sustained currents after 4 days in vitro. Thus, a direct steroid hormone effect may control the proper maturation of voltage-sensitive Ca2+ currents in leg motoneurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 211–223, 1998  相似文献   

5.
During metamorphosis in the hawkmoth, Manduca sexta, the larvalthoracic legs are replaced by a new set of adult legs that includenew sensory neurons and muscles, and participate in new patternsof locomotor activity. Larval leg motoneurons persist to innervatethe new adult leg muscles, but undergo striking changes in dendriticmorphology that are regulated by the insect steroid, 20-hydroxyecdysone.In the periphery, the motor terminals regress as larval musclesdegenerate, and expand as new adult muscles form from myoblasts.Evidence obtained both in vivo and in vitro suggests that theproliferation of myoblasts during metamorphosis is dependentupon innervation.  相似文献   

6.
Hill SR  Orchard I 《Peptides》2003,24(10):1511-1524
The gut tissues and associated nervous system of the African migratory locust, Locusta migratoria, were found to contain FMRFamide-like immunoreactive (FLI) material throughout the five larval instars and 2 weeks into the adult stage in both males and females. FMRFamide-like immunoreactivity associated with the locust gut was described using camera lucida techniques. FMRFamide-like immunoreactivity is observed in the frontal connectives, recurrent nerve, and oesophageal nerves; projections from the ingluvial ganglion onto the anterior midgut, and from the proctodeal nerve onto the hindgut and posterior midgut; in the neuropils of the frontal ganglion, hypocerebral ganglion and ingluvial ganglia; 30 cell bodies in the frontal ganglion; multipolar sensory cells on the foregut; and endocrine-like cells in the gastric caecae and midgut. Radioimmunoassay (RIA) was used to determine the quantities of FLI material in foreguts, gastric caecae, anterior and posterior midguts, and hindgut of first-fifth instar larvae, 1-3- and 14-17-day male and female adult locusts. As expected, as the tissue size (assessed by total protein content) increases, so does the amount of FLI material in each tissue. Normalizing for tissue size reveals significant differences in FLI content among the stages for each tissue tested. Reversed phase-high pressure liquid chromatography (RP-HPLC) followed by RIA has identified four groups of FLI fractions present in the gut, and different members of these groups are present in the various gut tissues.  相似文献   

7.
In the hawkmoth, Manduca sexta, thoracic leg motoneurons survive the degeneration of the larval leg muscles to innervate new muscles of the adult legs. The same motoneurons, therefore, participate in the very different modes of terrestrial locomotion that are used by larvae (crawling) and adults (walking). Consequently, changes in locomotor behavior may reflect changes in both the CNS and periphery. The present study was undertaken to determine whether motor patterns produced by the isolated CNS of adult Manduca, in the absence of sensory feedback, would resemble adult specific patterns of coordination. Pilocarpine, which evokes a fictive crawling motor pattern from the isolated larval CNS, also evoked robust patterned activity from leg motoneurons in the isolated adult CNS. As in the larva, levator and depressor motoneurons innervating the same leg were active in antiphase. Unlike fictive crawling, however, bursts of activity in levator or depressor motoneurons of one leg alternated with bursts in the homologous motoneurons innervating the opposite leg of the same segment and the leg on the same side in the adjacent segment. The most common mode of intersegmental activity generated by the isolated adult CNS resembled an alternating tripod gait, which is displayed, albeit infrequently, during walking in intact adult Manduca. A detailed analysis revealed specific differences between the patterned motor activity that is evoked from the isolated adult CNS and activity patterns observed during walking in intact animals, perhaps indicating an important role for sensory feedback. Nevertheless, the basic similarity to adult walking and clear distinctions from the larval fictive crawling pattern suggest that changes within the CNS contribute to alterations in locomotor activity during metamorphosis. Electronic Publication  相似文献   

8.
The plasticity of nerve cells expressing the neuropeptide FMRFamide was examined in adult hydra. Using a whole-mount technique with indirect immunofluorescence, the spatial pattern of neurons showing FMRFamide-like immunoreactivity (FLI) was visualized. These neurons were located in the tentacles, hypostome, and peduncle, but not in the body column or basal disc. Since every neuron in the nerve net is continuously displaced toward an extremity and eventually sloughed, the constant pattern of FLI+ neurons could arise in one of two ways. When displaced into the appropriate region, FLI- neurons are converted to FLI+ neurons, or FLI+ neurons arise by differentiation from interstitial cells. To distinguish between these two possibilities, interstitial cells, the multipotent precursors of the nerve cells, were eliminated by treatment with hydroxyurea or nitrogen mustard. Following head, or foot and peduncle, removal from these animals, the missing structures regenerated. The spatial pattern of FLI+ neurons reappeared in the newly regenerated head or peduncle. This shows FLI- neurons in the body column were converted to FLI+ when their position was changed to the head or the peduncle. When the peduncle was grafted into the body column, it was converted to basal disc or body column tissue, and FLI disappeared. The appearance and loss of FLI was always position dependent. These results indicate that the neurons in the mature nerve net can change their neuropeptide phenotype in response to changes in their position.  相似文献   

9.
During metamorphosis in the hawkmoth, Manduca sexta, identified larval leg motoneurons survive the degeneration of their larval targets to innervate new muscles of the adult legs. The dendrites and axon terminals of these motoneurons regress at the end of the larval stage and then regrow during adult development. Previous studies have implicated the insect steroid, 20-hydroxyecdysone (20-HE), in similar examples of dendritic reorganization during metamorphosis. The present studies were undertaken to test whether 20-HE acts directly on the leg motoneurons to regulate dendritic growth. Larval leg motoneurons were labeled with a fluorescent dye to permit their identification in culture following the dissociation of thoracic ganglia at later stages of development. Leg motoneurons isolated from early pupal stage animals (just before the normal onset of dendritic regrowth) survived in vitro and grew processes regardless of whether 20-HE was added to the culture medium. The extent of process outgrowth, however, as measured by the total length of all processes and the number of branches, was significantly greater for motoneurons maintained in the presence of 20-HE. The enhancement could be blocked by the addition of a juvenile hormone analog. By contrast, larval leg motoneurons that were isolated just before the normal period of dendritic regression did not show enhanced growth of neurites in the presence of 20-HE. The results suggest that 20-HE acts directly on the leg motoneurons to regulate the growth of processes during metamorphosis.  相似文献   

10.
This study analyses the maturation of centrally generated flight motor patterns during metamorphosis of Manduca sexta. Bath application of the octopamine agonist chlordimeform to the isolated central nervous system of adult moths reliably induces fictive flight patterns in wing depressor and elevator motoneurons. Pattern maturation is investigated by chlordimeform application at different developmental stages. Chlordimeform also induces motor patterns in larval ganglia, which differ from fictive flight, indicating that in larvae and adults, octopamine affects different networks. First changes in motoneuron activity occur at the pupal stage P10. Rhythmic motor output is induced in depressor, but not in elevator motoneurons at P12. Adult-like fictive flight activity in motoneurons is observed at P16 and increases in speed and precision until emergence 2 days later. Pharmacological block of chloride channels with picrotoxin also induces fictive flight in adults, suggesting that the pattern-generating network can be activated by the removal of inhibition, and that proper network function does not rely on GABAA receptors. Our results suggest that the flight pattern-generating network becomes gradually established between P12 and P16, and is further refined until adulthood. These findings are discussed in the context of known physiological and structural CNS development during Manduca metamorphosis.  相似文献   

11.
Persistent leg motoneurons of the moth Manduca sexta were investigated in larval and adult animals to compare their dendritic structures, intrinsic electrical properties and pattern of target innervation. The study focused on two identified motoneurons of the prothoracic leg. Despite the complete remodeling of leg muscles, the motoneurons innervated pretarsal flexor muscles in both larval and adult legs. Similarly, although the central dendrites regress and regrow, the branching pattern was similar with the exception of a prominent midline branch that was not present in the adult stage. The intrinsic electrical properties of the motoneurons differed between larval and adult stages. Larval motoneurons had significantly higher membrane input resistances and more depolarized resting membrane potentials than did motoneurons in pharate adults or adults. In all stages, one motoneuron had a low maximal firing frequency, whereas the second motoneuron, which innervated the other half of the muscle, had a high maximum firing frequency. Although the two motoneurons continued to innervate the same halves of the target muscle, their relative effects on muscular contraction were reversed during metamorphosis along with concomitant changes in intrinsic properties. Pretarsal flexor motoneurons in pharate adults (just prior to emergence) displayed properties similar to those in emerged adults. Accepted: 8 January 2000  相似文献   

12.
Summary We have developed an organ culture system of the anuran small intestine to reproduce in vitro the transition from larval to adult epithelial form which occurs during spontaneous metamorphosis. Tubular fragments isolated from the small intestine ofXenopus laevis tadpoles were slit open and placed on membrane filters in culture dishes. In 60% Leibovitz 15 medium supplemented with 10% charcoal-treated serum, the explants were maintained in good condition for at least 10 days without any morphologic changes. Addition of triiodothyronine (T3) at a concentration higher than 10−9 M to the medium could induce cell death of larval epithelial cells, but T3 alone was not sufficient for proliferation and differentiation of adult epithelial cells. When insulin (5 μg/ml) and cortisol (0.5 μg/ml) besides T3 were added, the adult cells proliferated and differentiated just as during spontaneous metamorphosis. On Day 5 of cultivation, the adult cells rapidly proliferated to form typical islets, whereas the larval ones rapidly degenerated. At the same time, the connective tissue beneath the epithelium suddenly increased in cell density. These changes correspond to those occurring at the onset of metamorphic climax. By Day 10, the adult cells differentiated into a simple columnar epithelium which possessed the brush border and showed the adult-type lectin-binding pattern. Therefore, the larval epithelium of the small intestine responded to the hormones and transformed into the adult one. This organ culture system may be useful for clarifying the mechanism of the epithelial transition from larval to adult type during metamorphosis.  相似文献   

13.
During metamorphosis, the insect nervous system must change to accomodate alterations in body form and behavior. Studies primarily on moths have shown that these changes involve the death of some larval neurons, the conservation and remodeling of others, and the maturation of new, adult-specific cells. The motor and sensory sides of the adult CNS vary in this regard with the former being constructed primarily from remodeled larval components, whereas the latter arises primarily from new neurons. Neuronal remodeling has received considerable attention. Larval-specific dendritic fields are pruned back during the larval–pupal transition, followed by the sprouting of adult-specific dendrites. Simple reflexes have been used to correlate these neuronal changes with the acquisition or loss of particular behaviors. The loss of the proleg retraction reflex is associated with the regression of the dendritic arbors of the proleg motoneurons. By contrast, expansion of axon arbors of the gin-trap afferents is necessary, but not sufficient, for the assembly of the gin-trap reflex in the pupal stage. The stretch receptor reflex provides a third example in which a new dendritic field in the adult form of a neuron is associated with new adult-specific connections. Interestingly, these connections are masked by persisting larval contacts until the emergence of the adult moth. For the metamorphosis of more complex behavioral circuits, some, such as that for flight behavior, seem to be assembled de novo, whereas others, like that for adult ecdysis behavior, show conservation of some circuit elements from the larval stage but with the superposition of some adult-specific components. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
1. Localization of FMRFamide-like immunoreactivity was examined in the ventral ganglion of the fly Sarcophaga bullata using the indirect immunofluorescent method. 2. There are six large cells in the thoracic ganglion which are highly immunoreactive at all stages of development. 3. During metamorphosis the thoracic FLI neurons shift their position from ventrolateral to mid-ventral position and their axons terminate and elaborate a highly immunoreactive dorsal neural sheath. 4. It is suggested that the dorsal neural sheath may function as a neurohaemal organ from which FMRFamide-like substances may be released into the haemolymph to act as neurohormones.  相似文献   

15.
Because leucokinins stimulate diuresis in some insects, we wished to identify the neurosecretory cells in Manduca sexta that might be a source of leucokinin-like neurohormones. Immunostaining was done at various stages of development, using an antiserum to leucokinin IV. Bilateral pairs of neurosecretory cells in abdominal ganglia 3–7 of larvae and adults are immunoreactive; these cells project via the ipsilateral ventral nerves to the neurohemal transverse nerves. The immunoreactivity and size of these lateral cells greatly increases in the pharate adult, and this change appears to be related to a period of intensive diuresis occurring a few days before adult eclosion. Relationships of these neurons to cells that are immunoreactive to a M. sexta diuretic hormone were also investigated. Diuretic hormone and leucokinin immunoreactivity are co-localized in the lateral neurosecretory cells and their neurohemal projections. A median pair of leucokinin-immunoreactive, and a lateral pair of diuretic hormone-immunoreactive neurons in the larval terminal abdominal ganglion project to neurohemal release sites within the cryptonephridium. The immunoreactivity of these cells is lost as the cryptonephridium is eliminated during metamorphosis. This loss appears to be related to the change from the larval to adult pattern of diuresis.  相似文献   

16.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   

17.
Endocrine cells exhibiting immunoreactivity to FMRFamide-like, LPLRFamide-like, neuropeptide Y(NPY)-like and peptide YY(PYY)-like peptides were found in the periphery of the Brockmann bodies of the cod, Gadus morhua, and rainbow trout, Oncorhynchus mykiss. No immunoreactivity or very weak labelling was found with antisera to pancreatic polypeptide (PP). Vasoactive intestinal polypeptide (VIP)-like immunoreactivity was found in nerve fibres, whereas labelling with VIP antiserum in endocrine cells disappeared after preincubation with nonimmune serum. There were always more immunoreactive cells in the rainbow trout than in the cod. No immunoreactivity could be seen with antisera to gastrin/cholecystokinin (CCK) or enkephalin. Double-labelling studies were performed to study the colocalization of the peptides in peripheral endocrine cells. Cells immunoreactive to NPY were also labelled with antisera to FMRFamide, LPLRFamide and PYY. The co-localization pattern of NPY varied; in some Brockmann bodies, a population of the immunoreactive cells showed co-localization and others contained NPY-like immunoreactivity only, whereas in other Brockmann bodies, all NPY-labelled cells also contained FMRFamide-like, LPLRFamide-like and PYY-like immunoreactivity. Cells immunoreactive to PYY similarly contained FMRFamide-like, LPLRFamide-like and NPY-like immunoreactivity, comparable to the patterns observed with NPY. Glucagon-like immunoreactivity was found at the periphery of the Brockmann bodies. A subpopulation of the glucagon-containing cells contained NPY-like immunoreactivity. PYY-like immunoreactivity was also found co-localized with glucagon-like immunoreactivity, as were FMRFamide-like and LPLRFamide-like immunoreactivity. Therefore, either NPY-like and PYY-like immunoreactivity together with FMRFamide-like and LPLRFamide-like immunoreactivity occur in the same endocrine cells of the Brockmann body of the cod and rainbow trout, or a hybrid NPY/PYY-like peptide recognized by both NPY and PYY antisera is present in the Brockmann body.  相似文献   

18.
 The conversion of an erythropoietic system from larval to adult type in anuran amphibia may possibly come about through cell replacement. The hormonal regulation of apoptosis of larval-type precursor cells and adult-type cell proliferation has yet to be examined in detail. In amphibians, corticoids synergize T3 action during metamorphosis. In the present study, examination was made of the process of larval-to-adult conversion in the liver erythropoietic site of Xenopus laevis, with special attention to how these metamorphic hormones, T3 and corticoid, regulate programmed cell death specific for larval erythroblasts and the proliferation of adult cells. Immunohistochemical analysis of liver sections indicates that the number of larval erythroblasts decreased to less than 50% at the early climax stage (stages 59–60) of metamorphosis. Overall liver morphology greatly changed subsequent to the climax stage from the three-lobe to the two-lobe shape. The addition of T3 (10-8 M) to premetamorphic tadpoles induced considerable liver morphological change and a 50% decrease in larval-type erythroblasts. These erythroblast decreases seem to take place through the apoptotic process, since double-staining experiments with in situ DNA nick-end labeling (TUNEL) and hemoglobin immunostaining revealed that DNA breakage of nuclei, a well-known feature of apoptosis, occured specifically in larval erythroblasts during prometamorphosis. Hydrocortisone (HC), which modulates T3 action during metamorphosis, was found not to be a factor in larval cell decrease. But adult erythroblasts increased by 8 times as much through the action of T3 and 32 times as much by the action of T3 plus HC, indicating the important action of T3–HC synergism. It thus follows that the erythropoietic system is converted during metamorphosis effectively by two distinct hormonal mechanisms, T3–HC synergism on adult erythroblast proliferation and T3-mediated programmed death of larval precursor cells. Accepted: 14 January 1999  相似文献   

19.
The effects of the widely used neurotoxic pyrethroid insecticides on neuronal development or plasticity are unclear. To expand knowledge about the influence of the pyrethroid fenvalerate on neuronal development, metamorphic remodelling of the primary olfactory neuropil of the beetle Tenebrio molitor has been studied. The antennal lobe is subdivided into distinct glomeruli before metamorphosis. This is in contrast to that which occurs in other well-studied holometabolous insects such as the moth Manduca sexta and the honeybee. As an indicator of antennal lobe interneurons, locusta-tachykinin immunoreactive neurons have been used. They project into the antennal lobes and form tufted arbors in larval and adult stages within glomeruli throughout the neuropil. These glomerular structures are invaded by glomerular sensory afferent axons and are surrounded by processes of glia cells. With pupation, the glomerulization is lost and no locusta-tachykinin or substance P immunoreactivity is visible in the antennal lobe. The immunoreactivity reappears during metamorphosis, starting with diffusely branched arbors that later become tufted. Application of the neurotoxic insecticide fenvalerate at pupation in sublethal concentrations resulted in a loss or reduction of glomerular pattern formation by neurons and glia cells during metamorphosis. Labelling of antennal sensory axons revealed that the olfactory neuropil was not deafferented, and also that the sensory axons were not organized into a normal glomerular pattern. In addition to the morphological differences, fenvalerate treatment caused locusta-tachykinin immunoreactivity to reappear prematurely during metamorphosis. Possible reasons for fenvalerate-induced alterations in antennal lobe development and their implications for normal development are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号