首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells generally respond to long-term hyperosmotic stress by accumulating nonperturbing organic osmolytes. Unlike bacteria, in which molecular mechanisms involved in the increased accumulation of osmolytes have been identified, those in multicellular organisms are virtually unknown. In mammals, during antidiuresis, cells of the renal inner medulla are exposed to high and variable extracellular NaCl. Under these conditions, the cells contain a high level of sorbitol and other osmolytes which help balance the high extracellular osmolality. PAP-HT25 is a continuous line of cells derived from rabbit renal inner medulla. When medium osmolality is increased by raising the NaCl concentration, these cells accumulate sorbitol. The sorbitol is synthesized from glucose in a reaction catalyzed by aldose reductase. When the medium is made hyperosmotic, aldose reductase activity increases because of a larger increase in the amount of enzyme. This increase is produced by the accelerated rate of synthesis of aldose reductase protein. The purpose of the present studies was to examine the mechanism of this increase in aldose reductase protein by measuring the relative abundance of aldose reductase mRNA. A cDNA clone coding for rabbit kidney aldose reductase was isolated. Antisense RNA probes transcribed from this clone hybridized specifically with a 1.5-1.6 kilobase mRNA in Northern blots. Cells grown chronically in hyperosmotic medium had a relative abundance of this specific mRNA which was six times that of cells grown in isoosmotic medium. When cells grown in isoosmotic medium were switched to hyperosmotic medium, the level of aldose reductase mRNA peaked (18-fold) at 18-24 h. The induction of aldose reductase mRNA by osmotic stress was reversible. Our finding of increased abundance of a specific mRNA in direct response to hyperosmotic stress represents the first report of such an effect in animals.  相似文献   

2.
A lens epithelial cell line established from a transgenic mouse synthesizes high levels of the enzyme aldose reductase which converts sugars to polyols. This enzyme has been implicated in the formation of sugar cataracts in animals and with diabetic complications in man. The mouse aldose reductase has been characterized and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis has an apparent molecular mass of 38,000, similar to the enzyme in rat and man. The cellular enzyme is inhibited by two aldose reductase inhibitors: Sorbinil (IC50 = 1.8 X 10(-7) M) and Alcon 1576 (IC50 = 7.8 X 10(-8) M). The amount and the specific activity of the aldose reductase can be further increased in the cells by raising the osmolarity of the medium to 500 mOSM. Although the amount of aldose reductase is increased approximately sevenfold under these conditions, alpha-crystallin, one of the main lens specific proteins, remained at about the same concentration. No detectable increase in sorbitol was found within the cells, in contrast to published reports on renal cells in which this polyol increases under similar hyperosmotic conditions; however, in the lens cells there was a five-fold increase in the inositol content, suggesting that this polyol rather than sorbitol may be used to compensate for some of the changes in the osmolarity. The induction of the enzyme aldose reductase without the apparent accumulation of its product suggests a complex mechanism for osmoregulation in the lens cells.  相似文献   

3.
GRB-PAP1 is a continuous line of epithelial cells derived from a rabbit renal inner medulla. Elevation of the NaCl concentration in the medium bathing these cells strongly induced the expression of a soluble protein with an apparent molecular mass of 39 kDa. The protein, purified by affinity chromatography with Amicon Matrex Gel Orange A, had enzyme activity characteristic of aldose reductase (alditol:NADPH+ oxidoreductase, EC 1.1.1.21). Goat antiserum against this purified aldose reductase selected the 39-kDa band from immunoblots of cells grown in a medium containing high NaCl. When the osmolality of the medium was increased by adding NaCl, the amount of aldose reductase protein and the aldose reductase activity increased together from very low to sustained high levels over several days. The aldose reductase protein was more than 10% of the soluble cell protein when cells were propagated in medium made hyperosmotic by adding NaCl to increase medium osmolality to 600 mosm.kg-1.  相似文献   

4.
We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant’s survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.  相似文献   

5.
In these studies we examined the effect of polyol accumulation on neural cellmyo-inositol metabolism and properties. Neuroblastoma cells were cultured for two weeks in media containing 30 mM glucose, fructose, galactose or mannose with or without 0.4 mM sorbinil or 250 Mmyo-inositol. Chronic exposure of neuroblastoma cells to media containing 30 mM glucose, galactose, or mannose caused a decrease inmyo- inositol content and myo-[2-3H]inositol accumulation and incorporation into phosphoinositides compared to cells cultured in unsupplemented medium or medium containing 30 mM fructose as an osmotic control. These monosaccharides each caused an increase in intracellular polyol levels with galactitol > sorbitol = mannitol accumulation. Chronic exposure of neuroblastoma cells to media containing 30 mM glucose, galactose, or mannose caused a significant decrease in Na+/K+ ATPase transport activity, resting membrane potential, and bradykinin-stimulated32P incorporation into phosphatidylinositol compared to cells cultured in medium containing 30 mM fructose. In contrast, basal incorporation of32P into phosphatidylinositol or basal and bradykinin-stimulated32P incorporation into phosphatidylinositol 4,5-bisphosphate were not effected. Each of these cellular functions as well asmyo-inositol metabolism and content and polyol levels remained near control values when 0.4 mM sorbinil, an aldose reductase inhibitor, was added to the glucose, galactose, or mannose supplemented media.myo-Inositol metabolism and content and bradykinin-stimulated phosphatidylinositol synthesis were also maintained when media containing 30 mM glucose, galactose, or mannose was supplemented with 250 Mmyo-inositol. The results suggest that polyol accumulation induces defects in neural cellmyo-inositol metabolism and certain cell functions which could, if they occurred in vivo, contribute to the pathological defects observed in diabetic neuropathy.  相似文献   

6.
1. The regulation of epithelial cell volume is an essential requirement for normal tissue function and the maintenance of cellular integrity. 2. Renal papillary epithelial cells utilize an organic to compensate for the shrinkage associated with exposure to hypertonic solutions. 3. These cells synthesize the polyol, sorbitol, to increase their intracellular solute content. 4. Sorbitol is synthesized from glucose by the enzyme aldose reductase; exposure of the cells to hypertonic media causes aldose reductase synthesis and subsequent sorbitol generation over a two or three day period. 5. The intracellular signal for the formation of aldose reductase is not yet identified.  相似文献   

7.
8.
Increased aldose reductase (ALR) activities were detected in the leaf tissues of tomato plants grown for 3 weeks in culture medium containing 10?7 or 10?4 M salicylic acid (SA), and in the roots after the 10?4 M SA pretreatment. The ALR activity changed in parallel with the sorbitol content in the leaves of the SA-treated plants. Salt stress elicited by 100 mM NaCl enhanced the accumulation of sorbitol in the leaves of control plants and as compared with the untreated control the sorbitol content in the SA-pretreated leaves remained elevated under salt stress. DEAE cellulose anionexchange column purification of the protein precipitated with 80 % (NH4)2SO4 revealed two enzyme fractions with ALR activity in both the leaf and the root tissues. The fraction of the leaf extract that was not bound to the column reacted with glucose and glucose-6-P as substrates, whereas glucose was not a substrate for the bound fraction or for root isoenzymes. The root enzyme was less sensitive to salt treatment: 50 mM NaCl caused 30 % inhibition in the leaf extract, whereas the enzyme activity of the root extract was not affected. It is suggested that increased ALR activity and sorbitol synthesis in the leaves of SA-treated tomato plants may result in an improved salt stress tolerance.  相似文献   

9.
Changes in cell water content resulting from sorbitol addition to the environment of L-929 cells were evaluated gravimetrically using14C-labeled polyethylene glycol as a probe of extracellular space. Reductions in cell water were proportional to sorbitol supplements up to 0.6 molal, above which no further measurable decrease occurred. No volume regulation occurred for at least 1 h but the percentage of cell water lost was quickly regained when physiological conditions were restored. The amount of cell water lost because of a given hyperosmotic exposure was found to exceed the loss of cell volume. That discrepancy could be the result of an overestimation of extracellular space and/or an underestimation of cell volume reduction as a result of infolding of the cell surface. Na+ and K+ were also measured in cells of variable water content and volume: no significant change occurred in the amounts of these ions per cell, but large increases in total cell concentration resulted from hyperosmotic exposure. The sum of Na+ and K+ concentrations exceeds the total osmotic pressure of the medium indicating that an appreciable fraction of Na+ and K+ must be bound to fixed charges within the cells. The results are evaluated in the context of intracellular organization.  相似文献   

10.
Streptozotocin diabetes induces a 4-fold increase in the maximal velocity of inner medullary aldose reductase as determined in vitro but increases sorbital synthesis in intact inner medullary collecting duct (IMCD) cells only 1.3-fold [1]. In order to resolve this discrepancy we investigated the importance of intracellular factors in controlling the role of cellular sorbitol synthesis. These factors include glucose concentration, sorbitol concentration, the activity of the NADPH-regenerating pentose phosphate pathway, intracellular NADP and NADPH content, and intracellular reduced (GSH) and oxidized glutathione (GSSG). It was found that the apparent Km of cellular sorbitol production for glucose was identical in control and diabetic rats (56 ± 18 vs. 59 ± 14 mmol/l d-glucose), whereas Vmax increased by 31% in diabetes. In inner medullary collecting duct cells of diabetic rats containing 146 ± 5 μmol sorbitol/g protein, sorbitol synthesis slightly lower (?15%), compared to cells which had been sorbitol-depleted prior to the experiment (87 ± 4 μmol sorbitol/g protein). However, no inhibitory effect of sorbitol (up to 200 mmol/l) was observed on aldose reductase activity in vitro. In diabetic rats the content of NADPH was about 32% lower than in the control rats (3.8 ± 0.3 vs. 5.6 ± 0.4 μmol/g protein) and the ratio of NADPH/NADP was decreased from 25.6 ± 5.1 to 8.6 ± 1.7. In homogenates of the inner medulla the activity of 6-phospho-gluconate dehydrogenase (EC 1.1.1.43) was identical in both experimental groups, so the pentose phosphate shunt seems to be unaltered. GSH content in diabetic rats was also diminished (4.2 ± 0.67 μmol/g protein vs. 7.41 ± 0.5 μmol/g protein) and the GSH/GSSG ratio fell from 92.6 to 57.4. In enzyme tests in vitro an apparent Km of 7.3 ± 1.9 μmol/l of the aldose reductase for NADPH was found; NADP acted as competitive inhibitor with a apparent Ki of 183 ± 31 μmol/l. Aldose reductase activity was also found to be strongly inhibited by the SH-group reagent p-chloromercurybenzoesulfonate (apparent Ki = 0.85 · 10?6 mol/l). Combining the results obtained on the properties of the aldose reductase in vitro and the observation made in the intact cells, the investigators suggest that the decrease in NADPH/ NADP ratio, as well as changes in the redox state in the cells of diabetic animals, can play a significant role in the control of sorbitol synthesis.  相似文献   

11.
The insulin mimetic effect of vanadate inin vitro incubation of erythrocytes with high glucose concentrations showed an increase in sorbitol accumulation and glucose utilization using U-14C-glucose. Aldose reductase inhibitors and vanadate addition reversed the sorbitol accumulation, whereas insulin could not reverse it. Increased glucose utilization was also normalized with vanadium compounds. Increased activity of aldose reductase and sorbitol levels in diabetic animals were also normalized with vanadate treatment.  相似文献   

12.
Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.  相似文献   

13.
Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition.  相似文献   

14.
15.
Renal medullary cells are normally exposed to high extracellular NaCl as part of the urinary concentrating mechanism. They react to this stress by accumulating sorbitol and other organic osmolytes. PAP-HT25, a line of epithelial cells derived from rabbit renal inner medulla, expresses this response. In hypertonic medium, these cells accumulate large amounts of sorbitol. There is a large increase in the amount of aldose reductase, which catalyzes production of sorbitol from glucose. The purpose of the present study was to investigate whether the aldose reductase protein increases because of faster synthesis or slower degradation. We measured the rate of synthesis and degradation of aldose reductase protein by pulse-chase with [35S]methionine, followed by immunoprecipitation with specific antiserum and autoradiography. The protein synthesis rate was 6 times greater in cells grown in hypertonic (500 mosmol/kg) medium, than in those grown in normal (300 mosmol/kg) medium. When control cells were switched to hypertonic medium, the synthesis rate increased 15-fold by 24 h, then decreased to 11-fold after 48 h. In contrast, synthesis rate continued to increase past 24 h when accumulation of sorbitol was prevented by inhibiting aldose reductase activity with Tolrestat. Thus, there is a feedback mechanism by which cellular sorbitol accumulation inhibits aldose reductase protein synthesis. Degradation of aldose reductase protein was slow (only about 25% in 3 days) and was not affected by osmolality. Thus, the osmoregulatory increase in aldose reductase protein is due to an increase in its synthesis rate and not to any change in its degradation.  相似文献   

16.
17.
Cultured L-929 cells respond to media-made hyperosmotic (600 mOsmol/kg H2O) by addition of NaCl, sorbitol or proline by adjusting successively their intracellular level in different osmolytes: Na+, K+, amino acids and sorbitol. In the NaCl medium, Na+ and K+ are first to increase. Their concentration is then down-regulated while they are replaced by less disrupting osmolytes: amino acids and sorbitol. The amino-acid level is also adjusted with respect to the increase in sorbitol which starts only after 24 h, depending on the induction of aldose reductase. A similar evolution in the amount of these osmolytes is observed, with different time scales and amplitudes, depending on whether the osmotic shocks are applied abruptly or slowly, in a more physiological way. The interplay between the osmolytes is also different depending on their availability in the external medium. Such complex evolutions indicate that a cascade of interacting signals must be considered to account for the overall regulation process. It can hardly be fitted into a model implicating a single primary signalling event (early increase in ions or decrease in cell volume) as usually postulated. Also, the volume up-regulation is not significantly different in the different conditions, showing that it is not primarily dependent on the adjustment of the intracellular osmolarity which is reached immediately upon cell shrinkage and is maintained all over, independently of the availability and changes in nature of the osmolytes.  相似文献   

18.
Aldose reductase is an important enzyme in the polyol pathway, where glucose is converted to fructose, and sorbitol is released. Aldose reductase activity increases in diabetes as the glucose levels increase, resulting in increased sorbitol production. Sorbitol, being less cell permeable tends to accumulate in tissues such as eye lenses, peripheral nerves and glomerulus that are not insulin sensitive. This excessive build-up of sorbitol is responsible for diabetes associated complications such as retinopathy and neuropathy. In continuation of our interest to design and discover potent inhibitors of aldo-keto reductases (AKRs; aldehyde reductase ALR1 or AKR1A, and aldose reductase ALR2 or AKR1B), herein we designed and investigated a series of new benzoxazinone-thiosemicarbazones (3a-r) as ALR2 and ALR1 inhibitors. Most compounds exhibited excellent inhibitory activities with IC50 values in lower micro-molar range. Compounds 3b and 3l were found to be most active ALR2 inhibitors with IC50 values of 0.52 ± 0.04 and 0.19 ± 0.03 μM, respectively, both compounds were more effective inhibitors as compared to the standard ALR2 inhibitor (sorbinil, with IC50 value of 3.14 ± 0.02 μM).  相似文献   

19.
Intact chloroplasts were isolated from spinach leaves using media with either 330 mM sorbitol or 200 mM KCl as the osmoticum. Chloroplasts isolated in KCl exhibited higher rates of CO2-dependent oxygen evolution in nine out of ten experiments, the average increase being 43%. Chloroplasts isolated in KCl routinely achieved rates of CO2-dependent oxygen evolution of 200–300 mol·mg chlorophyll-1·hour-1 at 20°C. Intact chloroplasts were also isolated in media with 200 mM NaCl or choline chloride but the rates of CO2 fixation were not superior to those isolated in sorbitol media. The K+ content of chloroplasts isolated in KCl media was higher than for chloroplasts isolated in sorbitol. It is suggested that the use of KCl as an osmoticum prevents the loss of chloroplast K+ which can occur during isolation in sorbitol media. Chloroplasts isolated in KCl lost, on average, 36% of the initial CO2 fixation activity after storage for four hours on ice, compared to 24% loss of activity for chloroplasts isolated in sorbitol. This increased loss of activity was not observed if KCl was used in the grinding medium and sorbitol or glycinebetaine in the resuspension media. For measurement of the maximum photosynthetic capacity in vitro, the use of KCl in the grinding medium may be better than sorbitol.Abbreviations BSA bovine serum albumin - Chl chlorophyll - Pi inorganic orthophosphate - EDTA ethlenediamine tetraacetic acid  相似文献   

20.
Numerous physiological aldehydes besides glucose are substrates of aldose reductase, the first enzyme of the polyol pathway which has been implicated in the etiology of diabetic complications. The 2-oxoaldehyde methylglyoxal is a preferred substrate of aldose reductase but is also the main physiological substrate of the glutathione-dependent glyoxalase system. Aldose reductase catalyzes the reduction of methylglyoxal efficiently (kcat=142 min−1 and kcat/Km=1.8×107 M−1 min−1). In the presence of physiological concentrations of glutathione, methylglyoxal is significantly converted into the hemithioacetal, which is the actual substrate of glyoxalase-I. However, in the presence of glutathione, the efficiency of reduction of methylglyoxal, catalyzed by aldose reductase, also increases. In addition, the site of reduction switches from the aldehyde to the ketone carbonyl. Thus, glutathione converts aldose reductase from an aldehyde reductase to a ketone reductase with methylglyoxal as substrate. The relative importance of aldose reductase and glyoxalase-I in the metabolic disposal of methylglyoxal is highly dependent upon the concentration of glutathione, owing to the non-catalytic pre-enzymatic reaction between methylglyoxal and glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号