首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular divalent cations are important regulators of integrin ligand binding activity. In this study we evaluated how divalent cations affect the organization of integrins into focal adhesion sites. Integrins αvβ3 and αvβ5 were compared because they share a high degree of structural homology and because both integrins mediate cell adhesion to vitronectin. On MG-63 osteosarcoma cells, we found that both the extent and pattern of integrin organization was regulated by the type of extracellular divalent ion. Integrin αvβ3 organized in focal contacts when Mn2+ or Mg2+ was present, but not in Ca2+. In contrast, αvβ5 organized in focal contacts only when Ca2+ or Mg2+ was present. Integrin αvβ5 clustered in a centrally located punctate field on the ventral surface of the cell in the presence of Mn2+. These observations reveal a previously unappreciated role for divalent ions in regulating the organization of integrins into focal adhesion sites. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Cyclic strain has been shown to modulate endothelial cell (EC) morphology, proliferation, and function. We have recently reported that the focal adhesion proteins focal adhesion kinase (pp125FAK) and paxillin, are tyrosine phosphorylated in EC exposed to strain and these events regulate the morphological change and migration induced by cyclic strain. Integrins are also localized on focal adhesion sites and have been reported to induce tyrosine phosphorylation of pp125FAK under a variety of stimuli. To study the involvement of different integrins in signaling induced by cyclic strain, we first observed the redistribution of α and β integrins in EC subjected to 4 h cyclic strain. Human umbilical vein endothelial cells (HUVEC) seeded on either fibronectin or collagen surfaces were subjected to 10% average strain at a frequency 60 cycles/min. Confocal microscopy revealed that β1 integrin reorganized in a linear pattern parallel with the long axis of the elongated cells creating a fusion of focal adhesion plaques in EC plated on either fibronectin (a ligand for α5β1) or collagen (a ligand for α2β1) coated plates after 4 h exposure to cyclic strain. β3 integrin, which is a vitronectin receptor, did not redistribute in EC exposed to cyclic strain. Cyclic strain also led to a reorganization of α5 and α2 integrins in a linear pattern in HUVEC seeded on fibronectin or collagen, respectively. The expression of integrins α5, α2, and β1 did not change even after 24 h exposure to strain when assessed by immunoprecipitation of these integrins. Cyclic strain-induced tyrosine phosphorylation of pp125FAK occurred concomitant with the reorganization of β1 integrin. We concluded that α5β1 and α2β1 integrins play an important role in transducing mechanical stimuli into intracellular signals. J. Cell. Biochem. 64:505–513. © 1997 Wiley-Liss, Inc.  相似文献   

3.
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Dermal fibroblasts are essential for the repair of cutaneous wounds. Fibroblasts presumably use cell surface receptors of the integrin family during migration into a wound from the adjacent uninjured tissue and for the subsequent matrix repairs. We have investigated the possible roles of platelet-derived growth factor and inflammatory cytokines in the regulation of integrin expression on wound fibroblasts using a porcine cutaneous wound model and cultured human cells. Tissue specimens collected from 4-day pig wounds were stained with antibodies specific for the α1 and α5 integrin subunits. Staining for α1 was markedly decreased on fibroblasts adjacent to the wound and in the granulation tissue, while staining for α5 was clearly enhanced in both locations. Normal adult human dermal fibroblasts in culture express the integrins α1β1, a collagen receptor, and α5β1, a fibronectin receptor. Quantitative flow cytometry was used to measure cell surface integrin expression after treatment with platelet-derived growth factor (PDGF)-AA, PDGF-AB, or PDGF-BB. Each isoform of PDGF produced a significant decrease in the level of α1 present on the cell surface and an increase in the level of α5. Furthermore, PDGF-BB produced a corresponding decrease in α1 mRNA and an increase in α5 mRNA. In contrast, treatment with three inflammatory cytokines, IL-1β, TNF-α, and IFN-γ, produced clear increases in the levels of α1 and α5 present on the cell surface. Our observations suggest that the differential effects of PDGF and inflammatory cytokines may be part of the mechanism regulating the expression of α1 and α5 integrins by dermal fibroblasts during wound repair. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Malignant cell transformation is generally accompanied by changes in their interactions with environing matrix proteins in a way to facilitate their migration and generate invasion. Our results show the binding of rat colon adenocarcinoma PROb cells to fibronectin strongly reduced when compared to normal rat intestine epithelial cells. This decrease was not due to the level of α(s)β1 integrins expressed at the surface of the cell line. However, β1- and α(s)-associated subunits appeared to be structurally altered as shown by immunoprecipitation followed by electrophoresis. Pulse chase experiments using 35S methionine evidenced differences in the biosynthesis of β1- and α (s) associated integrins: normal epithelial IEC18 cells required 16 h for maximal biosynthesis of the completely mature β1 subunit, while PROb cells did it within 4-6 h. Studies using endoglycosidases O, H, D, and N glycanase confirmed that the molecular weight alterations were due to abnormal glycosylation and suggested that α(s)β1 integrins of PROb cells could bear both mature complex and immature high mannose types while IEC18 cells borne only mature complex type oligosaccharidic chains. Treatment of both cell types with castanospermine, an inhibitor of N-glycosylation, reduced the differences observed in their adhesion to the fibronectin without significantly affecting β1 receptors expression at the cell surface. These results strongly suggest a role of the glycosylation of β1 receptors in the adhesion of rat colon adenocarcinoma PROb cells to fibronectin substrata. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Adhesion to collagens by most cell types is mediated by the integrins α1β1 and α2β1. Both integrin α subunits belong to a group which is characterized by the presence of an I domain in the N-terminal half of the molecule, and this domain has been implicated in the ligand recognition. Since purified α1β1 and α2β1 differ in their binding to collagens I and IV and recognize different sites within the major cell binding domain of collagen IV, we investigated the potential role of the α1 and α2 I domains in specific collagen adhesion. We find that introducing the α2 I domain into α1 results in surface expression of a functional collagen receptor. The adhesion mediated by this chimeric receptor (α1-2-1β1) is similar to the adhesion profile conferred by α2β1, not α1β1. The presence of α2 or α1-2-1 results in preferential binding to collagen I, whereas α1 expressing cells bind better to collagen IV. In addition, α1 containing cells bind to low amounts of a tryptic fragment of collagen IV, whereas α2 or α1-2-1 bearing cells adhere only to high concentrations of this substrate. We also find that collagen adhesion of NIH-3T3 mediated by α2β1 or α1-2-1β1, but not by α1, requires the presence of Mn2+ ions. This ion requirement was not found in CHO cells, implicating the I domain in cell type-specific activation of integrins. J. Cell. Physiol. 176:634–641, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
BackgroundIntegrins are extracellular matrix receptors involved in several pathologies. Despite homologies between the RGD-binding α5β1 and αvβ3 integrins, selective small antagonists for each heterodimer have been proposed. Herein, we evaluated the effects of such small antagonists in a cellular context, the U87MG cell line, which express both integrins. The aim of the study was to determine if fibronectin-binding integrin antagonists are able to impact on cell adhesion and migration in relationships with their defined affinity and selectivity for α5β1 and αvβ3/β5 purified integrins.MethodsSmall antagonists were either selective for α5β1 integrin, for αvβ3/β5 integrin or non-selective. U87MG cell adhesion was evaluated on fibronectin or vitronectin. Migration assays included wound healing recovery and single cell tracking experiments. U87MG cells stably manipulated for the expression of α5 integrin subunit were used to explore the impact of α5β1 integrin in the biological assays.ResultsU87MG cell adhesion on fibronectin or vitronectin was respectively dependent on α5β1 or αvβ3/β5 integrin. Wound healing migration was dependent on both integrins. However U87MG single cell migration was highly dependent on α5β1 integrin and was inhibited selectively by α5β1 integrin antagonists but increased by αvβ3/β5 integrin antagonists.ConclusionsWe provide a rationale for testing new integrin ligands in a cell-based assay to characterize more directly their potential inhibitory effects on integrin cellular functions.General significanceOur data highlight a single cell tracking assay as a powerful cell-based test which may help to characterize true functional integrin antagonists that block α5β1 integrin-dependent cell migration.  相似文献   

8.
Extracellular matrix fibronectin fibrils serve as passive structural supports for the organization of cells into tissues, yet can also actively stimulate a variety of cell and tissue functions, including cell proliferation. Factors that control and coordinate the functional activities of fibronectin fibrils are not known. Here, we compared effects of cell adhesion to vitronectin versus type I collagen on the assembly of and response to, extracellular matrix fibronectin fibrils. The amount of insoluble fibronectin matrix fibrils assembled by fibronectin-null mouse embryonic fibroblasts adherent to collagen- or vitronectin-coated substrates was not significantly different 20 h after fibronectin addition. However, the fibronectin matrix produced by vitronectin-adherent cells was ~ 10-fold less effective at enhancing cell proliferation than that of collagen-adherent cells. Increasing insoluble fibronectin levels with the fibronectin fragment, anastellin did not increase cell proliferation. Rather, native fibronectin fibrils polymerized by collagen- and vitronectin-adherent cells exhibited conformational differences in the growth-promoting, III-1 region of fibronectin, with collagen-adherent cells producing fibronectin fibrils in a more extended conformation. Fibronectin matrix assembly on either substrate was mediated by α5β1 integrins. However, on vitronectin-adherent cells, α5β1 integrins functioned in a lower activation state, characterized by reduced 9EG7 binding and decreased talin association. The inhibitory effect of vitronectin on fibronectin-mediated cell proliferation was localized to the cell-binding domain, but was not a general property of αvβ3 integrin-binding substrates. These data suggest that adhesion to vitronectin allows for the uncoupling of fibronectin fibril formation from downstream signaling events by reducing α5β1 integrin activation and fibronectin fibril extension.  相似文献   

9.
We previously reported infiltration of immune-inflammatory cells in coronary arteries from cardiac allografts, associated with increased endothelial and smooth muscle cell fibronectin synthesis regulated by interleukin (IL)-1b?. We now investigate, using a porcine endothelial-smooth muscle cell co-culture system, whether IL-1b?-stimulated fibronectin production is functionally important in lymphocyte transendothelial migration. Lymphocytes were harvested from porcine peripheral blood and, in the unactivated state or following activation with phorbol myristic acetate (PMA) and IL-2, were characterized by fluorescence-activated cell sorter (FACS) analysis and added to a confluent endothelial monolayer on the upper chamber of a transwell system. Endothelial cells, as well as smooth muscle cells (in the bottom of the chamber), were stimulated with IL-1b?. Then transendothelial lymphocyte migration was determined in the presence of CS1 and RGD (fibronectin) peptides, blocking α4b?1 and α5b?1 integrin receptors on lymphocyte surfaces, respectively. A 55-70% inhibition of lymphocyte migration was observed when compared to control peptides. The combination of CS1 and RGD peptides did not significantly enhance the inhibitory effect of either peptide alone. A similar decrease in lymphocyte transendothelial migration toward smooth muscle cells was documented using a monoclonal antibody to cellular fibronectin. Furthermore, using smooth muscle cell conditioned medium; we reproduced the enhanced transendothelial lymphocyte migration as well as the inhibition with blocking peptides or fibronectin antibodies. Our data suggest that cytokine-mediated fibronectin synthesis in vascular cells recruits inflammatory cells through interactions of specific peptides with cell surface α4b?1 α5b?1 integrins. © 1995 Wiley-Liss, Inc.  相似文献   

10.
As the prevalence of osteoporosis is expected to increase over the next few decades, the development of novel therapeutic strategies to combat this disorder becomes clinically imperative. These efforts draw extensively from an expanding body of knowledge pertaining to the physiologic mechanisms of skeletal homeostasis. To this body of knowledge, we contribute that cells of hematopoietic lineage may play a crucial role in balancing osteoblastic bone formation against osteoclastic resorption. Specifically, our laboratory has previously demonstrated that megakaryocytes (MKs) can induce osteoblast (OB) proliferation in vitro, but do so only when direct cell‐to‐cell contact is permitted. To further investigate the nature of this interaction, we have effectively neutralized several adhesion molecules known to function in the analogous interaction of MKs with another cell type of mesenchymal origin—the fibroblast (FB). Our findings implicate the involvement of fibronectin/RGD‐binding integrins including α3β1 (VLA‐3) and α5β1 (VLA‐5) as well as glycoprotein (gp) IIb (CD41), all of which are known to be expressed on MK membranes. Furthermore, we demonstrate that interleukin (IL)‐3 can enhance MK‐induced OB activation in vitro, as demonstrated in the MK–FB model system. Taken together, these results suggest that although their physiologic and clinical implications are very different, these two models of hematopoietic–mesenchymal cell activation are mechanistically analogous in several ways. J. Cell. Biochem. 109: 927–932, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Bone sialoprotein (BSP), a secreted glycoprotein found in bone matrix, has been implicated in the formation of mammary microcalcifications and osteotropic metastasis of human breast cancer (HBC). BSP possesses an integrin-binding RGD (Arg-Gly-Asp) domain, which may promote interactions between HBC cells and bone extracellular matrix. Purified BSP, recombinant human BSP fragments and BSP-derived RGD peptides are shown to elicit migratory, adhesive, and proliferative responses in the MDA-MB-231 HBC cell line. Recombinant BSP fragment analysis localized a significant component of these activities to the RGD domain of the protein, and synthetic RGD peptides with BSP flanking sequences (BSP-RGD) also conferred these responses. The fibronectin-derived RGD counterpart, GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro), could not support these cellular responses, emphasizing specificity of the BSP configuration. Although most of the proliferative and adhesive responses could be attributed to RGD interactions, these interactions were only partly responsible for the migrational responses. Experiments with integrin-blocking antibodies demonstrated that BSP-RGD-induced migration utilizes the αvβ3 vitronectin receptor, whereas adhesion and proliferation responses were αvβ5-mediated. Using fluorescence activated cell sorting, we selected two separate subpopulations of MDA-MB-231 cells enriched for αvβ3 or αvβ5 respectively. Although some expression of the alternate αv integrin was still retained, the αvβ5-enriched MDA-MB-231 cells showed enhanced proliferative and adhesive responses, whereas the αvβ3-enriched subpopulation was suppressed for proliferation and adhesion, but showed enhanced migratory responses to BSP-RGD. In addition, similar analysis of two other HBC cell lines showed less marked, but similar RGD-dependent trends in adhesion and proliferation to the BSP fragments. Collectively, these data demonstrate BSP effects on proliferative, migratory, and adhesive functions in HBC cells and that the RGD-mediated component differentially employs αvβ3 and αvβ5 integrin receptors. J. Cell. Physiol. 176:482–494, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Syndecans function as co-receptors for integrins on different matrixes. Recently, syndecan-1 has been shown to be important for α2β1 integrin-mediated adhesion to collagen in tumor cells by regulating cell adhesion and migration on two-dimensional collagen. However, the function of syndecans in supporting α2β1 integrin interactions with three-dimensional (3D) collagen is less well studied. Using loss-of-function and overexpression experiments we show that in 3D collagen syndecan-4 supports α2β1-mediated collagen matrix contraction. Cell invasion through type I collagen containing 3D extracellular matrix (ECM) is driven by α2β1 integrin and membrane type-1 matrix metalloproteinase (MT1-MMP). Here we show that mutational activation of K-ras correlates with increased expression of α2β1 integrin, MT1-MMP, syndecan-1, and syndecan-4. While K-ras-induced α2β1 integrin and MT1-MMP are positive regulators of invasion, silencing and overexpression of syndecans demonstrate that these proteins inhibit cell invasion into collagen. Taken together, these data demonstrate the existence of a complex interplay between integrin α2β1, MT1-MMP, and syndecans in the invasion of K-ras mutant cells in 3D collagen that may represent a mechanism by which tumor cells become more invasive and metastatic.  相似文献   

13.
Previous studies have shown that the adhesion protein, vitronectin, directs the localization of urokinase-type plasminogen activator (uPA) to areas of cell-substrate adhesion, where uPA is thought to regulate cell migration as well as pericellular proteolysis. In the present study, HT-1080 cell lines expressing either wild-type vitronectin or vitronectin containing a single amino-acid substitution in the integrin binding domain were used to assess whether ligation of the αvβT5 integrin was required for uPA localization to focal adhesions. The synthesis of wild-type vitronectin by HT-1080 cells adherent to either collagen or fibronectin resulted in the redistribution of both the αvβT5 integrin as well as uPA to focal adhesion structures. In contrast, cells synthesizing mutant vitronectin, containing the amino-acid substitution in the integrin binding domain, were unable to direct the redistribution of either αvβT5 or uPA to focal adhesions. Recombinant forms of wild-type and mutant vitronectin were prepared in a baculovirus system and compared for their ability to direct the redistribution of vitronectin integrin receptors as well as uPA on human skin fibroblasts. In the absence of vitronectin, fibroblast cells adherent to fibronectin assemble focal adhesions which contain the βT1 integrin but do not contain uPA. Addition of recombinant wild-type, but not mutant, vitronectin to fibroblasts adherent to fibronectin resulted in the redistribution of αvβT3, αvβT5, and uPA into focal adhesions. However, when cells were plated directly onto antibodies directed against either the αvβT3 or αvβT5 integrins, uPA was not localized on the cell surface. These data indicate that ligation of vitronectin integrin receptors is necessary but not sufficient for the localization of uPA to areas of cell-matrix adhesion, and suggest that vitronectin may promote cell migration by recruiting vitronectin integrin receptors and components of the plasminogen activator system to areas of cell matrix contact.  相似文献   

14.
This study describes the adhesion of human osteoblasts, culturedin vitro, to proteins of the extracellular matrix, the biosynthesis of integrins, their topography and organization in focal contacts. The adhesion of osteoblasts to laminin, type I collagen, vitronectin and fibronectin was 77–100%, in 2h and at 55nm substrata concentration, and it was accompained by spreading of the cells. Adhesion to fibronectin (FN), laminin (LN) and type I collagen (COL) was inhibited by antibodies to the β1 integrin and antibodies to the α5 chain affected adhesion only to fibronectin. Using a panel of polyclonal antibodies against α2, α3, α5, αv, β1 andβ3 integrins we detected synthesis of α3β1, α5β1, αvβ3, and an αvβ1-like dimer by immunoprecipitation of metabolically labelled cell lysates. Studies of immunolocalization demonstrated the presence of the same integrins identified in lysates, plus α4, α1 and β5 subunits. In cells adhering in the presence of serum we showed organization of β3 and αv integrins in focal contacts. In cells adhering to fibronectin α5 and β1 integrins were localized in focal contacts. In cells spread on laminin or type I collagen none of the integrins investigated was localized in focal contacts.  相似文献   

15.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

16.
Integrin αVβ3 plays an important role in regulating cellular activities and in human diseases. Although the structure of αVβ3 has been studied by crystallography and electron microscopy, the detailed activation mechanism of integrin αVβ3 induced by fibronectin remains unclear. In this study, we investigated the conformational and dynamical motion changes of Mn2+‐bound integrin αVβ3 by binding to fibronectin with molecular dynamics simulations. Results showed that fibronectin binding to integrin αVβ3 caused the changes of the conformational flexibility of αVβ3 domains, the essential mode of motion for the domains of αV subunit and β3 subunit and the degrees of correlated motion of residues between the domains of αV subunit and β3 subunit of integrin αVβ3. The angle of Propeller domain with respect to the Calf‐2 domain of αV subunit and the angle of Hybrid domain with respect to βA domain of β3 subunit significantly increased when integrin αVβ3 was bound to fibronectin. These changes could result in the conformational change tendency of αVβ3 from a bend conformation to an extended conformation and lead to the open swing of Hybrid domain relative to βA domain of β3 subunit, which have demonstrated their importance for αVβ3 activation. Fibronectin binding to integrin αVβ3 significantly decreased the relative position of α1 helix to βA domain and that to metal ion‐dependent adhesion site, stabilized Mn2+ ions binding in integrin αVβ3 and changed fibronectin conformation, which are important for αVβ3 activation. Results from this study provide important molecular insight into the “outside‐in” activation mechanism of integrin αVβ3 by binding to fibronectin.  相似文献   

17.
18.
The interaction between the integrin α6β4 and plectin is essential for the assembly and stability of hemidesmosomes, which are junctional adhesion complexes that anchor epithelial cells to the basement membrane. We describe the crystal structure at 2.75 Å resolution of the primary α6β4–plectin complex, formed by the first pair of fibronectin type III domains and the N‐terminal region of the connecting segment of β4 and the actin‐binding domain of plectin. Two missense mutations in β4 (R1225H and R1281W) linked to nonlethal forms of epidermolysis bullosa prevent essential intermolecular contacts. We also present two structures at 1.75 and 2.05 Å resolution of the β4 moiety in the absence of plectin, which reveal a major rearrangement of the connecting segment of β4 on binding to plectin. This conformational switch is correlated with the way α6β4 promotes stable adhesion or cell migration and suggests an allosteric control of the integrin.  相似文献   

19.
Schwann cells (SCs) co-cultured with sensory neurons require ascorbate supplementation for basal lamina assembly and differentiation into myelinating cells. The ascorbate requirement can be bypased by adding a purifed basal lamina component, laminin, to SC/neuron cocultures. We have examined the role of laminin receptors, Namely, the β1 subfamily of integrins, in the process of myelination. We demonstrate by immunostaining or immunoprecipitation that undifferentiated SCs in contact with axons express large amounts of the β1 subunit in association with the α1 or α6 subunit. In co-cultures of myelinating SCs, α1β1 is no longer present, α6β1 is still present but at reduced levels, and α6β4 is expressed at much higher levels than in co-cultures of undifferentiated SCs. Immunogold labelling at the electron microscope level suggested that β1 integrins are randomly distributed on undifferentiated SCs, become localized to the SC surface contacting basal lamina in differentiating SCs before the onset of myelination, and are not detected on myelinating SCs. Fab fragments of β1 function-blocking antibody block both attachment of isolated SCs to laminin and formation of myelin sheaths by SCs co-cultured with neurons in ascorbate-supplemented medium. SCs unable to myelinate in the presence of the anti-β1 antibody assemble patchy basal lamina that is only loosely attached to the cell surface and in some cases appears to be detaching from the membrane. In contrast, an α1β1 function-blocking antibody only partially blocks attachment of isolated SCs to laminin but has no inhibitory effect on SC myelination. These results are consistent with the hypothesis that a member of the β1 subfamily of integrins other than α1β1 binds laminin present in basal lamina to the SC surface and transduces signals that are critical for initiation of SC differentiation into a myelinating cell. 1994 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号