首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human prostatic carcinoma frequently metastasizes to bone tissue and activates bone metabolism, especially bone formation, at the site of metastasis. It has been reported that an extract of prostatic carcinoma and conditioned medium (CM) of a human prostatic carcinoma cell line, PC-3, established from a bone metastastic lesion, stimulate osteoblastic cell proliferation. However, there is little information about the effect of PC-3 CM on the differentiation of osteoblastic cells. In this study, we investigated the effect of PC-3 CM on the differentiation of two types of osteoblastic cells, primary fetal rat calvaria (RC) cells containing many undifferentiated osteoprogenitor cells, and ROS 17/2.8, a well-differentiated rat osteosarcoma cell line. PC-3 CM inhibited bone nodule formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker enzyme, on days 7, 14, and 21 (RC cells) or 3, 6, and 9 (ROS 17/2.8 cells) in a dose-dependent manner (5–30% CM). However, the CM did not affect cell proliferation or cell viability. PC-3 CM was found to markedly block the gene expression of ALPase and osteocalcin (OCN) mRNAs but had no effect on the mRNA expression of osteopontin (OPN), the latter two being noncollagenous proteins related to bone matrix mineralization. These findings suggest that PC-3 CM contains a factor that inhibits osteoblastic cell differentiation and that this factor may be involved in the process of bone metastasis from prostatic carcinoma. J. Cell. Biochem. 67:248–256, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Cultured rodent osteoblastic cells reiterate the phenotypic differentiation and maturation of osteoblasts seen in vivo. As previously shown, the human osteosarcoma cell line HOS 58 represents a differentiated stage of osteoblast development. The potential of HOS 58 for still further in vitro differentiation suggests the line can serve as a model of osteoblast maturation. Using this cell line, we have investigated the influence of 1,25-(OH)2-D3 (D3), TGF-beta and Dexamethasone (Dex) on proliferation and on the protein and mRNA levels of alkaline phosphatase (AP), procollagen 1 (Col 1), and osteocalcin (Oc), as well as mineralization during 28 days in culture. AP mRNA and protein were highly expressed throughout the culture period with further increase of protein AP activity at constant gene expression levels. A differentiation inhibiting effect of either TGF-beta or Dex was seen. Col 1 was investigated without the use of ascorbic acid and showed only minor changes during culture time or stimulation. The gene expression for Oc increased continually whereas protein synthesis peaked at confluence and decreased thereafter. TGF-beta and Dex treatments decreased Oc mRNA and protein levels. Stimulation by D3 was maximal at day 7 with a decrease thereafter. HOS 58 cells showed no mineralization capacity when stimulated with different agents, as measured by energy-dispersive X-ray microanalysis. This was not due to absence of Cbfa1 expression. In conclusion, the HOS 58 osteosarcoma cell line represents a differentiated cell line with highly expressed and physiologically regulated AP expression during further differentiation in culture. We observed a dissociation between osteocalcin gene expression and protein secretion which may contribute to the lack of mineralization in this cell line.  相似文献   

3.
In a sequel to investigate osteogenic potential of ethanolic extract of Cissus quadrangularis (CQ), the present study reports the osteoblast differentiation and mineralization potential of ethyl acetate (CQ-EA) and butanol (CQ-B) extracts of CQ on mouse pre-osteoblast cell line MC3T3-E1 (sub-clone 4) with an objective to isolate an antiosteoporotic compound. Growth curve, proliferation, and viability assays showed that both the extracts were nontoxic to the cells even at high concentration (100 µg/ml). The cell proliferation was enhanced at low concentrations (0.1 µg/ml and 1 µg/ml) of both the extracts. They also upregulated the osteoblast differentiation and mineralization processes in MC3T3-E1 cells as reflected by expression profile of osteoblast marker genes such as RUNX2, Osterix, Collagen (COL1A1), Alkaline Phosphatase (ALP), Integrin-related Bone Sialoprotein (IBSP), Osteopontin (OPN), and Osteocalcin (OCN). CQ-EA treatment resulted in early differentiation and mineralization as compared with the CQ-B treatment. These findings suggest that low concentrations of CQ-EA and CQ-B have proliferative and osteogenic properties. CQ-EA, however, is more potent osteogenic than CQ-B.  相似文献   

4.
G S Stein  J B Lian  T A Owen 《FASEB journal》1990,4(13):3111-3123
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation can be examined in primary diploid cultures of fetal calvarial-derived osteoblasts by the combination of molecular, biochemical, histochemical, and ultrastructural approaches. Modifications in gene expression define a developmental sequence that has 1) three principal periods: proliferation, extracellular matrix maturation, and mineralization; and 2) two restriction points to which the cells can progress but cannot pass without further signals. The first restriction point is when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle and cell growth regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which an enhanced expression of alkaline phosphatase occurs immediately after the proliferative period, and later an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited; and 3) enhanced levels of expression of the osteoblast markers when collagen deposition is promoted, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and development of the osteoblast phenotype. The loss of stringent growth control in transformed osteoblasts and in osteosarcoma cells is accompanied by a deregulation of the tightly coupled relationship between proliferation and progressive expression of genes associated with bone cell differentiation.  相似文献   

5.
6.
To clarify the mechanism of circGOLPH3 regulation on prostate cancer cells, we performed an overexpression and interference circGOLPH3 assay in prostate cancer cells PC-3 and then evaluated cellular viability, proliferation, cell cycle, and apoptosis of prostate cancer cells by MTT, CCK8, Edu stain, TUNEL stain, and flow cytometry. Binding proteins of CircGOLPH3 were identified by RNA pull-down, mass spectrometry, and RNA-binding protein immunoprecipitation (RIP) assays. The expressions of CircGOLPH3 and CBX7 were measured by qRT-PCR. The results showed that after overexpression of circGOLPH3, the proliferative capacity and the viability of PC-3cells were significantly improved, whereas apoptosis was inhibited. CircGOLPH3 could bind to the CBX7 protein that was highly expressed in the PC-3 cell. Additionally, a functional test on CBX7 showed that the CBX7 overexpression notably improved the proliferative capacity and the viability of PC-3 cells and decreased cellular apoptosis, which was consistent with the effects of circGOLPH3. The validated the present study that circGOLPH3 and its binding protein CBX7 can promote prostate cancer cell proliferation and inhibit apoptosis.  相似文献   

7.
We studied the effects of in vitro treatment of differentiating osteogenic cells with FMS*Calciumfluor, to determine whether it caused changes in proliferative or differentiation potential of osteoblasts. FMS*Calciumfluor was developed for the therapy of post-menopausal and age-related osteoporosis on the basis of the principles of resonance homeopathy and VTR Vega test. Its daily prescribed therapeutical usage is about 30,000-fold less in fluoride concentration than that recommended for NaF associated with calcium monophosphate. Rat tibial osteoblast (ROB) primary cultures represent populations of early osteoblasts and their derivative cultures of more than 60 cumulative population doubling (CPD) represent more mature osteogenic cells. Both these populations were shown to undergo in vitro differentiation, as monitored by the sequential expression of markers that define the stages of the osteogenic progression. Here we report that continual treatment of ROB during osteogenesis with FMS*Calciumfluor modulated the expression of critical osteogenic markers: alkaline phosphatase (AP), an indicator of osteoblast maturation, and(45)Ca incorporation into the matrix and nodule formation, events of the last phase of osteogenesis and a measure of osteoid mineralization. Treatment did not affect proliferation, or expression and activation of metalloproteinases (MMP). AP activity and levels of AP mRNA were increased by treatment with FMS*Calciumfluor; the incorporation of radiolabelled Ca into the matrix was also increased and the formation of nodules occurred in a shorter time and with higher frequency than in untreated control cultures. The effects of FMS*Calciumfluor were concentration dependent and specific for its modalities of preparation, and were observed at a concentration about three orders of magnitude lower than similar effects reported in the literature by treatment of osteoblast cultures in vitro with NaF.  相似文献   

8.
The relationship of cell proliferation to the temporal expression of genes characterizing a developmental sequence associated with bone cell differentiation was examined in primary diploid cultures of fetal calvarial derived osteoblasts by the combined use of autoradiography, histochemistry, biochemistry, and mRNA assays of osteoblast cell growth and phenotypic genes. Modifications in gene expression define a developmental sequence that has 1) three principle periods--proliferation, extracellular matrix maturation, and mineralization--and 2) two restriction points to which the cells can progress but cannot pass without further signals--the first when proliferation is down-regulated and gene expression associated with extracellular matrix maturation is induced, and the second when mineralization occurs. Initially, actively proliferating cells, expressing cell cycle- and cell growth-regulated genes, produce a fibronectin/type I collagen extracellular matrix. A reciprocal and functionally coupled relationship between the decline in proliferative activity and the subsequent induction of genes associated with matrix maturation and mineralization is supported by 1) a temporal sequence of events in which there is an enhanced expression of alkaline phosphatase immediately following the proliferative period, and later, an increased expression of osteocalcin and osteopontin at the onset of mineralization; 2) increased expression of a specific subset of osteoblast phenotype markers, alkaline phosphatase and osteopontin, when proliferation is inhibited by hydroxyurea; and 3) enhanced levels of expression of the osteoblast markers as a function of ascorbic acid-induced collagen deposition, suggesting that the extracellular matrix contributes to both the shutdown of proliferation and the development of the osteoblast phenotype.  相似文献   

9.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects.  相似文献   

10.
ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase-1) is an established regulator of tissue mineralization. Previous studies demonstrated that ENPP1 is expressed in differentiated osteoblasts and that ENPP1 influences matrix mineralization by increasing extracellular levels of inorganic pyrophosphate. ENPP1 is also expressed in osteoblastic precursor cells when stimulated with FGF2, but the role of ENPP1 in preosteoblastic and other precursor cells is unknown. Here we investigate the function of ENPP1 in preosteoblasts. We find that ENPP1 expression is critical for osteoblastic differentiation and that this effect is not mediated by changes in extracellular concentration levels of phosphate or pyrophosphate or ENPP1 catalytic activity. MC3T3E1(C4) preosteoblastic cells, in which ENPP1 expression was suppressed by ENPP1-specific shRNA, and calvarial cells isolated from Enpp1 knock-out mice show defective osteoblastic differentiation upon stimulation with ascorbate, as indicated by a lack of cellular morphological change, a lack of osteoblast marker gene expression, and an inability to mineralize matrix. Additionally, MC3T3E1(C4) cells, in which wild type or catalytic inactive ENPP1 expression was increased, exhibited an increased tendency to differentiate, as evidenced by increased osteoblast marker gene expression and increased mineralization. Notably, treatment of cells with inorganic phosphate or pyrophosphate inhibited, as opposed to enhanced, expression of multiple genes that are expressed in association with osteoblast differentiation, matrix deposition, and mineralization. Our results indicate that ENPP1 plays multiple and distinct roles in the development of mineralized tissues and that the influence of ENPP1 on osteoblast differentiation and gene expression may include a mechanism that is independent of its catalytic activity.  相似文献   

11.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands seem to induce anticancer effects on prostate cancer cells, but the mechanism is not clear. The effect of PPARgamma ligands omega-6 fatty acids and ciglitazone (2-15 microM)--on proliferation, and apoptosis of LNCaP, PC-3, DU145, CA-K and BPH-K cells was studied. PPARgamma ligands led to: (1) reduction of proliferation (20-50%) of all the studied cell lines, (2) stimulation of differentiation of prostate cancer cells through an increased expression (1.5-3-fold: LNCaP, DU145, BPH-K) or reexpression (PC-3, CA-K) of E-cadherin with parallel inhibition of N-cadherin expression (PC-3, CA-K) and (3) down-regulation (1-2-fold) of beta-catenin and c-myc expression. The selective PPARgamma antagonist GW9662 abolished the effect of those ligands on prostate cancer cells. These results suggest that inhibition of beta-catenin and in effect c-myc expression through activation of PPARgamma may help prostate cancer cells to restore several characteristics of normal prostate cells phenotype.  相似文献   

12.
Teleost fish have recently been implemented as suitable model organisms to study vertebrate development, in particular skeletogenesis. In vitro cell systems derived from fish bone have been successfully established, although their development has been hampered by the limited availability of fish serum to supplement culture medium. Commercially available sera are mostly of mammalian origin and thus not necessarily adequate to fish cell growth. The main objective of this work was to compare proliferative and mineralogenic potential of bovine and fish sera using fish bone‐derived cell lines VSa13 and VSa16. Fish serum was shown to (i) strongly stimulate cell proliferation in an apparent dose‐dependent and cell type‐specific manner, (ii) induce morphological changes, and (iii) enhance extracellular matrix mineralization of bone cells, although cytotoxic for fish osteoblast‐like cells at the concentration tested. To better understand mechanisms underlying mineralogenic effect of fish serum in fish chondrocytes, expression of several mineralization‐related genes was evaluated by qPCR. Regulation of matrix Gla protein (MGP) and bone morphogenetic protein 2 (BMP2) gene expression was modified upon culture with fish serum in a way compatible with an early onset and an increase in mineralization. In conclusion, fish serum was shown to be more adequate to proliferation and differentiation/mineralization of fish bone‐derived cells.  相似文献   

13.
Increasing evidence suggests that bone marrow derived mesenchymal stem cells (BM‐MSCs) are recruited into the stroma of developing tumors where they contribute to progression by enhancing tumor growth and metastasis, or by inducing anticancer‐drug resistance. Prostate cancer cells secrete ligands of epidermal growth factor receptor (EGFR) and EGFR signaling could play an important role in the cross‐talk between mesenchymal stem cells and prostate cancer cells. In this study, we showed that treatment of human primary MSCs with conditioned medium (CM) derived from the bone metastatic PC3 carcinoma cells (PC3‐CM) resulted in: a significant activation of EGFR; increased proliferation; increased osteoblastic but decreased adipocitic differentiation; inhibition of senescence induced by serum starvation; increased CCL5 secretion. These activities were significantly inhibited in the presence of the EGFR tyrosine kinase inhibitor gefitinib. PC3‐CM directly inhibited osteoclastogenesis as well as the ability of osteoblasts to induce osteoclast differentiation. The increased MSCs migration by PC3‐CM and PC3 cells was partially mediated by CCL5. MSC‐CM increased the formation of colonies by PC3 cells and inhibited the anti‐proliferative activity of Docetaxel. Activation of EGFR expressed on MSCs by PC3‐CM enhanced their capability to increase PC3 cells proliferation and to inhibit Docetaxel activity. These findings, by showing that the tumor‐promoting interactions between PC3 cells and MSCs are mediated, at least in part, by EGFR, suggest a novel application of the EGFR‐tyrosine kinase inhibitors in the treatment of prostate cancer. J. Cell. Biochem. 114: 1135–1144, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The insulin-like growth factor (IGF) system plays an important role in the autocrine and paracrine regulation of bone formation and remodeling. The aim of this study was to evaluate the role of the autocrine IGF system during osteogenic differentiation in rat tibial osteoblasts (ROB) in culture. In this in vitro model, the stages of osteogenesis studied were S1, corresponding to the onset of alkaline phosphatase (AP) expression (days 0-3); S2, coincident with the peak of AP expression in differentiation culture conditions (days 4-6), and S3, corresponding to the onset of mineral deposition in the extracellular matrix (days 7-9). The results showed that conditioned medium of ROB contains greater amounts of IGF-II than IGF-I at all differentiation stages. Both peptides showed the highest concentrations on day 3 of differentiation (end of S1). All IGF-binding proteins (IGFBPs), except IGFBP-1 and -6, were detected, and IGFBP-2 was the most abundant IGFBP present in the conditioned media, and its degradation increased from S1 to S3. By semiquantitative RT-PCR, IGF-I and IGF-II were highly expressed on days 3 and 6, whereas IGFBP-2 was constantly expressed. We focused our study on the role of IGF-II and IGFBP-2 on the synthesis of AP, an early marker of osteoblast maturation. The results showed that a significant increase in AP expression was induced by IGF-II added to the differentiating osteoblasts continuously or in S1 but not in S2 or S3. IGFBP-2 was able to potentiate endogenous and exogenous IGF-II-dependent stimulation of AP activity, and its proteolytic degradation in late stages of osteogenesis (S2 and S3) was highly correlated with the increase of active matrix metalloproteinase-2 in the CM and with the decreased efficacy of IGF-II action. These data suggest that IGFBP-2, at nearly equimolar concentration with IGF-II, plays a potentiating role in IGF-II action on ROB differentiation in vitro.  相似文献   

15.
Osteocytes are thought to orchestrate bone remodeling, but it is unclear exactly how osteocytes influence neighboring bone cells. Here, we tested whether osteocytes, osteoblasts, and periosteal fibroblasts subjected to pulsating fluid flow (PFF) produce soluble factors that modulate the proliferation and differentiation of cultured osteoblasts and periosteal fibroblasts. We found that osteocyte PFF conditioned medium (CM) inhibited bone cell proliferation, and osteocytes produced the strongest inhibition of proliferation compared to osteoblasts and periosteal fibroblasts. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) attenuated the inhibitory effects of osteocyte PFF CM, suggesting that a change in NO release is at least partially responsible for the inhibitory effects of osteocyte PFF CM. Furthermore, osteocyte PFF CM stimulated osteoblast differentiation measured as increased alkaline phosphatase activity, and l-NAME decreased the stimulatory effects of osteocyte PFF CM on osteoblast differentiation. We conclude that osteocytes subjected to PFF inhibit proliferation but stimulate differentiation of osteoblasts in vitro via soluble factors and that the release of these soluble factors was at least partially dependent on the activation of a NO pathway in osteocytes in response to PFF. Thus, the osteocyte appears to be more responsive to PFF than the osteoblast or periosteal fibroblast with respect to the production of soluble signaling molecules affecting osteoblast proliferation and differentiation.  相似文献   

16.
mTORC1 signaling not only plays important physiological roles in the regulation of proliferation and osteogenic differentiation of BMSCs, but also mediates exogenous Wnt‐induced protein anabolism and osteoblast differentiation. However, the downstream effectors of the mTORC1 signaling in the above processes are still poorly understood. In this study, we explored the specific role of S6K1, one of the major targets of the mTORC1 pathway, in BMSCs self ‐ renewal and osteogenic differentiation. We first found that S6K1 was active in primary mouse bone marrow stromal cells, and further activated upon osteogenic induction. We then determined the effects of S6K1 inhibition by LY2584702 Tosylate, a selective inhibitor of S6K1 (hereafter S6KI), using both primary mouse bone marrow stromal cells and ST2 cells. Colony‐Forming Unit‐Fibroblast (CFU‐F) assays showed that S6KI dramatically reduced the total number of colonies formed in primary BMSCs cultures. Under the basal osteogenic culture condition, S6KI significantly inhibited mRNA expression of osteoblast marker genes (Sp7, Bglap, Ibsp, and Col1a1), ALP activity and matrix mineralization. Upon Wnt3a treatments, S6KI inhibited Wnt3a‐induced osteoblast differentiation and expression of protein anabolism genes in ST2 cells, but to a much lesser degree than rapamycin (a specific inhibitor of mTORC1 signaling). Collectively, our findings have demonstrated that pharmacological inhibition of S6K1 impaired self ‐ renewal and osteogenic differentiation of BMSCs, but only partially suppressed exogenous Wnt3a‐induced osteoblast differentiation and protein anabolism.  相似文献   

17.
It is well established that bone metastases comprise bone; however, the exact factors/mechanisms involved remain unknown. We hypothesized that tumor cells secreted factors capable of altering normal bone metabolism. The aims of the present study were to (1) determine the effects of secretory products isolated from HT-39 cells, a human breast cancer cell line, on osteoprogenitor cell (MC3T3-E1 cells) behavior, and (2) identify tumor-derived factor(s) that alters osteoblast activities. Conditioned media (CM) from HT-39 cells were collected following a 24-h serum-free culture. The ability of CM to alter gene expression in MC3T3-E1 cells was determined by Northern analysis. CM effects on cell proliferation and mineralization ability were determined using a Coulter counter and von Kossa stain, respectively. MC3T3-E1 cells were treated with CM plus noggin, a factor known to block bone morphogenic proteins (BMPs), to determine whether BMPs, shown to be present in CM, were linked with CM effects on MC3T3-E1 cell activity. In addition, inhibitors of MAP kinase kinase (MEK), protein kinase C (PKC), and protein kinase A were used to identify the intracellular signaling pathway(s) by which the active factors in CM regulated osteoblast behavior. CM treatment significantly enhanced BSP mRNA (2.5-fold over control), but had no effect on cell proliferation. Mineralization assay showed that CM enhanced mineral nodule formation compared to controls. Noggin inhibited CM-induced upregulation of BSP mRNA, suggesting that BMPs were responsible for upregulating BSP gene expression in MC3T3-E1 cells. The PKC inhibitor blocked CM-mediated upregulation of BSP, suggesting involvement of the PKC pathway in regulating BSP expression. BMPs secreted by HT-39 cells may be responsible for enhancing BSP expression in MC3T3-E1 cells. Continued studies targeted at determining the role of BMPs in regulating bone metabolism are important for understanding the pathogenesis of bone diseases.  相似文献   

18.
Cancer as a multistep and complicated disease is regulated by several molecular and cellular events. Cancer treatment could be managed at the early stages when the tumor is confined in the tissue. However, disseminated cancer cells metastasize to other body parts and generate new tumors resulting in mortality. Mesenchymal stem cells (MSCs) are found in different body parts and helps adult tissue regeneration. The role of MSCs in cancer progression has emerged as one of the important aspects in cancer biology and is the aim of interest in recent years. In the current study, effects of Dental Pulp Stem Cells (DPSCs) on PC-3 prostate cancer cell proliferation and migration were conducted by cell proliferation, apoptosis, gene expression and cell migration analysis in vitro. Condition medium (CM) obtained from DPSCs increased cell proliferation of PC-3 cells and decreased apoptosis. Either administration of CM or trans well co-culture of DPSCs increased cell migration in scratch assay, confirmed by gene expression analysis of migratory genes including fibronectin, laminin and collagen type I (Col I). Furthermore, DPSCs participated in a self-organized structure with PC-3 cells in co-culture conditions. Overall, results indicated that DPSCs could promote PC-3 cancer cell proliferation and metastasis in co-culture conditions in vitro.  相似文献   

19.
Hyperprolactinemia is one of the risk factor of decrease in bone mass which has been believed to be mediated by hypogonadism. However, the presence of prolactin receptor in human osteosarcoma cell line and primary bone cell culture from mouse calvariae supported the hypothesis of a direct prolactin (PRL) action on bone cells. Therefore, the aim of this study was to investigate the role of PRL and its signal transduction pathway in the regulation of bone metabolism via osteoblast differentiation. Human pre‐osteoblasts (SV‐HFO) that differentiate in a 3‐week period from proliferating pre‐osteoblasts (days 2–7) to extracellular matrix producing cells (days 7–14) which is eventually mineralized (days 14–21) were used. Concentration of PRL mimicked a lactating period (100 ng/ml) was used to incubate SV‐HFO for 21 days in osteogenic medium. Human prolactin receptor mRNA and protein are expressed in SV‐HFO. PRL significantly decreased osteoblast number (DNA content) which was due to a decrease in proliferation. PRL increased osteogenic markers, RUNX2 and ALP in early stage of osteoblast differentiation while decreasing it later suggesting a bi‐directional effect. Calcium measurement and Alizarin red staining showed a reduction of mineralization by PRL while having neither an effect on osteoblast activity nor RANKL/OPG mRNA ratio. We also demonstrated that PRL action on mineralization was not via PI‐3 kinase pathway. The present study provides evidence of a direct effect of prolactin on osteoblast differentiation and in vitro mineralization. J. Cell. Biochem. 107: 677–685, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号