首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
White JH  Lund RA  Bauer WR 《Biopolymers》1999,49(7):605-619
Closed DNA loops containing one or more bent regions are important structures that occur in the regulation of gene expression. We analyze the response of structures of this type to a change in applied rotation (change in linking deficiency, delta Lk). Our results apply to a closed loop formed from an elastic rod that is intrinsically bent in Nb discrete, 20 degrees steps up to a maximum of 240 degrees, the bent regions being initially coplanar with the plane of the relaxed DNA loop. We determine the effect of changing the intrinsic elastic resistance of the DNA loop to bending and torsional deformations. This relative resistance is expressed by Poisson's ratio v, which depends upon the ratio of bending stiffness to torsional rigidity. Poisson's ratio is primarily a function of salt type and concentration. We find that the tertiary structure of DNA loops changes with delta Lk, but that the geometric response can be either of two quite different types, depending upon the precise (Nb, v) pair. For combinations of Nb and v that are above a critical curve (the Fickel curve), the response to increasing delta Lk is nonmonotonic (NMT region): the distance between the loop closure point and its diametric opposite first decreases, then increases, as delta Lk increases. For combinations of Nb and v that are below the Fickel curve (NMT region), the corresponding diameter never increases, but always decreases with increasing delta Lk. In addition to these results, we define and implement a new measure of tertiary structure in closed DNA: the absolute writhe, AWr.  相似文献   

2.
We discuss the predictions which follow from the assumption of statistically independent twist and writhe distributions of given variances in circular DNA with single-strand nicks. The nature of the topoisomer distribution produced upon covalent closure of the nicks is described, as well as the nature of the twist and writhe distributions in the fully-closed molecules. In particular, we show how the distributions depend on the magnitudes of the given variances, and how the relative magnitudes of the variances can be deduced from experiment. One additional consequence of the theory is the prediction of a necessary difference between the temperature coefficient of the twist in nicked versus fully-closed circular DNA. The ratio of the two twist coefficients turns out to depend only on the ratio of the twist and writhe variances in nicked DNA.  相似文献   

3.
Using heteroduplex molecules formed from a pair of plasmids, one of which contains a small deletion relative to the other, it is shown that bacterial topoisomerase I can relax a positively supercoiled DNA if a short single-stranded loop is placed in the DNA. This result supports the postulate that the specificity of bacterial DNA topoisomerase I for negatively supercoiled DNA in its relaxation reaction derives from the requirement of a short single-stranded DNA segment in the active enzyme-substrate complex. Nucleolytic and chemical probing of complexes between bacterial DNA topoisomerase I and heteroduplex DNA molecules containing single-stranded loops ranging from 13 to 27 nucleotides in length suggests that the enzyme binds specifically to the region containing a single-stranded loop; the site of DNA cleavage by the topoisomerase appears to lie within the single-stranded loop, with the enzyme interacting with nucleotides on both sides of the point of cleavage.  相似文献   

4.
Single and multiple loops were seen when the plasmid pRW751 was allowed to react with anti-Z-DNA or with a Z-specific cross-linking agent. Loop formation was dependent upon negative supercoiling and the presence of Z-specific antibody or cross-linking agent. Restriction enzyme mapping located 18 sites at the bottoms of loops, in addition to the two (dG-dC)n inserts of pRW751. No more than 5 loops were seen in any of the measured molecules; thus, not all potential Z-sites assume the Z conformation at any particular time. Stretches of alternating purine-pyrimidine sequences occur at all 20 sites. Almost all of the Z sites could be mapped to regions located at the beginnings or ends of reading frames or at various regulatory sites. Our findings support the concept that supercoiling brings distant sequences to within 5A of one another, allowing joint participation in regulatory processes controlled by DNA-binding proteins.  相似文献   

5.
TRF1 is a dimer and bends telomeric DNA.   总被引:25,自引:0,他引:25  
A Bianchi  S Smith  L Chong  P Elias    T de Lange 《The EMBO journal》1997,16(7):1785-1794
  相似文献   

6.
7.
Monte Carlo simulations are employed to investigate the thermodynamics of the first transition in writhe of a circular model filament corresponding to a 468 base-pair DNA. Parameters employed in these simulations are the torsional rigidity, C = 2.0 × 10−19 dyne cm2, and persistence length, P = 500 Å. Intersubunit interactions are modeled by a screened Coulomb potential. For a straight line of subunits this accurately approximates the nonlinear Poisson-Boltzmann potential of a cylinder with the linear charge density of DNA. Curves of relative free energy vs writhe at fixed linking difference (Δ1) exhibit two minima, one corresponding to slightly writhed circles and one to slightly underwrithed figure-8's, whenever Δ1 lies in the transition region. The free energies of the two minima are equal when Δ1c = 1.35, which defines the midpoint of the transition. At this midpoint, the free energy barrier between the two minima is found to be ΔGbar = (0.20) kBT at 298 K. Curves of mean potential energy vs writhe at fixed linking difference similarly exhibit two minima for Δ1 values in the transition region, and the two minimum mean potential energies are equal when Δ1 = 1.50. At the midpoint writhe, Δ1c = 1.35, the difference in mean potential energy between the minimum free energy figure-8 and circle states is (1.3) kBT, and the difference in their entropies is 1.3 kB. Thus, the entropy of the minimum free energy figure-8 state significantly exceeds that of the circle at the midpoint of the transition. The first transition in writhe is found to occur over a rather broad range of Δ1 values from 0.85 to 1.85. The twist energy parameter (ET), which governs the overall free energy of supercoiling, undergoes a sigmoidal decrease, while the translational diffusion coefficient undergoes a sigmoidal increase, over this same range. The static structure factor exhibits an increase, which reflects a decrease in radius of gyration associated with the circle to figure-8 transition. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
In-phase ligated DNA containing T(n)A(n) segments fail to exhibit the retarded polyacrylamide gel electrophoresis (PAGE) migration observed for in-phase ligated A(n)T(n) segments, a behavior thought to be correlated with macroscopic DNA curvature. The lack of macroscopic curvature in ligated T(n)A(n) segments is thought to be due to cancellation of bending in regions flanking the TpA steps. To address this issue, solution-state NMR, including residual dipolar coupling (RDC) restraints, was used to determine a high-resolution structure of [d(CGAGGTTTAAACCTCG)2], a DNA oligomer containing a T3A3 tract. The overall magnitude and direction of bending, including the regions flanking the central TpA step, was measured using a radius of curvature, Rc, analysis. The Rc for the overall molecule indicated a small magnitude of global bending (Rc = 138 +/- 23 nm) towards the major groove, whereas the Rc for the two halves (72 +/- 33 nm and 69 +/- 14 nm) indicated greater localized bending into the minor groove. The direction of bending in the regions flanking the TpA step is in partial opposition (109 degrees), contributing to cancellation of bending. The cancellation of bending did not correlate with a pattern of roll values at the TpA step, or at the 5' and 3' junctions, of the T3A3 segment, suggesting a simple junction/roll model is insufficient to predict cancellation of DNA bending in all T(n)A(n) junction sequence contexts. Importantly, Rc analysis of structures refined without RDC restraints lacked the precision and accuracy needed to reliably measure bending.  相似文献   

9.
10.
Abstract

We discuss the predictions which follow from the assumption of statistically independent twist and writhe distributions of given variances in circular DNA with single-strand nicks. The nature of the topoisomer distribution produced upon covalent closure of the nicks is described, as well as the nature of the twist and writhe distributions in the fully-closed molecules. In particular, we show how the distributions depend on the magnitudes of the given variances, and how the relative magnitudes of the variances can be deduced from experiment. One additional consequence of the theory is the prediction of a necessary difference between the temperature coefficient of the twist in nicked versus fully-closed circular DNA. The ratio of the two twist coefficients turns out to depend only on the ratio of the twist and writhe variances in nicked DNA.  相似文献   

11.
12.
We have determined by two-dimensional nuclear magnetic resonance studies and molecular mechanics calculations the three-dimensional solution structure of a 21 residue oligonucleotide capable of forming a hairpin structure with a loop of three thymidine residues. This structure is in equilibrium with a duplex form. At 33 degrees C, low ionic strength and in the presence of MgCl2 the hairpin form dominates in solution. Six Watson-Crick base pairs are formed topped by the loop structure. The residues 1-3 and 18-21 are not complementary and form dangling ends. Distance constraints have been derived from nuclear Overhauser enhancement measurements. These, together with molecular mechanics calculations, have been used to determine the structure. We do not observe stacking of thymidine residues either over the 3' or the 5' end of the stem.  相似文献   

13.
Q Wang  J M Calvo 《The EMBO journal》1993,12(6):2495-2501
Lrp (Leucine-responsive regulatory protein) is a global regulatory protein that controls the expression of many operons in Escherichia coli. One of those operons, ilvIH, contains six Lrp binding sites located within a several hundred base pair region upstream of the promoter region. Analysis of the binding of Lrp to a set of circularly permuted DNA fragments from this region indicates that Lrp induces DNA bending. The results of DNase I footprinting experiments suggest that Lrp binding to this region facilitates the formation of a higher-order nucleoprotein structure. To define more precisely the degree of bending associated with Lrp binding, one or two binding sites were separately cloned into a pBend vector and analyzed. Lrp induced a bend of approximately 52 degrees upon binding to a single binding site, and the angle of bending is increased to at least 135 degrees when Lrp binds to two adjacent sites. Lrp-induced DNA bending, and a natural sequence-directed bend that exists within ilvIH DNA, may be architectural elements that facilitate the assembly of a nucleoprotein complex.  相似文献   

14.
Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology.  相似文献   

15.
Fourteen RNA hairpins containing a four-membered loop and a bulge nucleotide were synthesized and their thermal stabilities determined. The combined contribution of a four-membered loop and bulge A to the free energy of a hairpin is calculated to be 9.3 kcal/mol at 37 degrees C and successfully predicts the stability of an independent RNA hairpin. The introduction of a bulge nucleotide to the helical stem of an RNA hairpin destabilizes the molecule in a sequence-dependent manner. The individual thermodynamic contributions of a four-membered loop and bulge A, G, and U residues to the stability of an RNA hairpin loop are presented.  相似文献   

16.
17.
18.
19.
Helical phasing between DNA bends and the determination of bend direction.   总被引:11,自引:1,他引:10  
The presence and location of bends in DNA can be inferred from the anomalous mobility of DNA fragments or protein-DNA complexes during electrophoresis in polyacrylamide gels. Direction of bending is not so easily determined. We show here that a protein-induced bend, when linked to a protein-independent DNA bend by a segment of variable length, exhibits an electrophoretic mobility that varies in a sinusoidal manner with the length of the linker. Mobility minima occur once for each addition to the linker of one helical turn of DNA. Since minima should occur when two bends reinforce one another, the direction of one bend relative to the other can be determined from the distances between the two centers of bending at which minima occur. Our results strongly support the idea that the A5-6 tracts in kinetoplast DNA bend towards the minor groove while the bend at the recombination site of the gamma delta resolvase (binding site I of the gamma delta res site) bends towards the major groove.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号