首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adhesion force and specificity in the first experimental evidence for cell-cell recognition in the animal kingdom were assigned to marine sponge cell surface proteoglycans. However, the question whether the specificity resided in a protein or carbohydrate moiety could not yet be resolved. Here, the strength and species specificity of cell-cell recognition could be assigned to a direct carbohydrate-carbohydrate interaction. Atomic force microscopy measurements revealed equally strong adhesion forces between glycan molecules (190-310 piconewtons) as between proteins in antibody-antigen interactions (244 piconewtons). Quantitative measurements of adhesion forces between glycans from identical species versus glycans from different species confirmed the species specificity of the interaction. Glycan-coated beads aggregated according to their species of origin, i.e., the same way as live sponge cells did. Live cells also demonstrated species selective binding to glycans coated on surfaces. These findings confirm for the first time the existence of relatively strong and species-specific recognition between surface glycans, a process that may have significant implications in cellular recognition.  相似文献   

2.
Obtaining a better understanding of the molecular basis of cell recognition remains an important challenge with regard to the social functioning of cells in multicellular systems. The wide structural diversity of carbohydrates allows many combinatorial possibilities for fine-tuning cell-cell and cell-matrix recognition in multicellular organisms. Direct carbohydrate-carbohydrate interaction would endow both the flexibility and the specificity of reversible contacts at the cell surface during the formation, maintenance and pathogenesis of tissues. The recent development of methods for the characterization of such interactions will help to expand our knowledge of the mechanisms that trigger early events in cell recognition.  相似文献   

3.
Cellular adhesion is what keeps cells together in multicellular organisms. Cells adhere to each other, to extracellular matrices, and to the substratum. Biochemical analyses of these processes have suggested some of the types of surface molecules which may be involved, but definitive evidence must rely on effective reconstruction of functional membranes or genetic alteration of the pertinent genes. Together these approaches may give us a better understanding of how cells sort out and form tissues during development.  相似文献   

4.
Collagens V and VI have been previously identified as specific extracellular matrix (ECM) ligands for the NG2 proteoglycan. In order to study the functional consequences of NG2/collagen interactions, we have utilized the GD25 cell line, which does not express the major collagen-binding beta(1) integrin heterodimers. Use of these cells has allowed us to study beta(1) integrin-independent phenomena that are mediated by binding of NG2 to collagens V and VI. Heterologous expression of NG2 in the GD25 line endows these cells with the capability of attaching to surfaces coated with collagens V and VI. The specificity of this effect is emphasized by the failure of NG2-positive GD25 cells to attach to other collagens or to laminin-1. More importantly, NG2-positive GD25 cells spread extensively on collagen VI. beta(1) integrin-independent extension of ruffling lamellipodia demonstrates that engagement of NG2 by the collagen VI substratum triggers signaling events that lead to rearrangement of the actin cytoskeleton. In contrast, even though collagens V and VI each bind to the central segment of the NG2 ectodomain, collagen V engagement of NG2 does not trigger cell spreading. The distinct morphological consequences of NG2/collagen VI and NG2/collagen V interaction indicate that closely-related ECM ligands for NG2 differ in their ability to initiate transmembrane signaling via engagement of the proteoglycan.  相似文献   

5.
何发  王欣  郭佳  李崎  关锋 《生物工程学报》2014,30(6):962-971
神经细胞黏附分子(Neural cell adhesion molecule,NCAM)是一类表达于神经元、胶质细胞、骨骼细胞以及自然杀伤细胞表面的糖蛋白。NCAM在细胞-细胞黏附及神经细胞迁移等过程中起着重要作用,也是用来研究多聚唾液酸(Polysialic acid,PSA)的模式蛋白。将来源于小鼠乳腺上皮细胞NMuMG中的NCAM基因克隆到真核表达载体pcDNA3.1(+),转染至中国仓鼠卵巢细胞突变株ldlD-14细胞中,通过抗生素G418筛选及蛋白质印迹法检测,得到过表达NCAM的永久转染细胞株。利用ldlD-14细胞的特性,通过在无血清的基本培养基中添加半乳糖与否可以轻易操纵NCAM分子上糖链的修饰,为后期研究糖基化对NCAM分子功能的影响提供工作基础。  相似文献   

6.
7.
Working with Mel-85 (a human melanoma cell line), we have been able to detect a laminin-binding molecule with an apparent molecular mass of 100/110 kDa (Mel-85-LBM). Reduction with -mercaptoethanol decreases its molecular mass but does not affect its ability to bind laminin. This laminin interaction seems to be very specific since Mel-85-LBM binds laminin, but not fibronectin, vitronectin or type I collagen in affinity chromatography experiments. The molecule has a negative net charge at physiological pH and binds laminin in a divalent cation dependent way. Mel-85-LBM was metabolically radiolabeled with sodium [35S]-sulfate and chemical -elimination of purified Mel-85-LBM releases chondroitin sulfate chains. Mel-85-LBM is also sensitive to chondroitinase ABC digestion. These findings show that this molecule is a chondroitin sulfate proteoglycan. The location of this proteoglycan at the cell surface is evidenced by experiments using a polyclonal antiserum raised against purified Mel-85LBM, that specifically reacts with just one molecule by western blotting among Mel-85 total cell extract as well as produces a positive signal by flow cytometry and a fluorescence profile of Mel-85 cells adhered on laminin.  相似文献   

8.
9.
Since protein–protein interactions (PPIs) regulate a variety of cellular processes, the detection of PPIs is crucial for elucidating the underlying molecular mechanisms as well as developing therapeutics. In this study, we propose a novel system to detect PPIs using the distinct domains of focal adhesion kinase (FAK). In this system named “split FAK”, the linker and kinase domains in native FAK are tethered separately to two target proteins of interest. The interaction between the target proteins brings the linker and kinase domains into proximity, which leads to phosphorylation at Y397 of the linker domain, recruitment of another tyrosine kinase Src, and phosphorylation at Y576 of the kinase domain. PPIs are readily detected by probing phosphorylation at Y397 and Y576 of these domains. To demonstrate this system, we designed a series of split FAK chimeras with different domain structures. Consequently, dimerizer-induced interaction between FK506-binding protein 12 (FKBP) and the T2098L mutant of FKBP12-rapamycin binding domain (FRB) was clearly detected by probing phosphorylation at the specific tyrosine residues of most of the split FAK chimeras. This is a novel PPI detection system based on a mechanism-inspired design of a trans-activated split kinase.  相似文献   

10.
11.
Sticking together: Cell adhesion interactions inArabidopsis reproduction   总被引:1,自引:0,他引:1  
We review the role of the extracellular matrix in transducing environmental signals, focusing on adhesion molecules in plants and animals. Plant reproduction is ideal for investigating cell-cell interactions; recently-describedArabidopsis thaliana mutants defective in cell adhesion during reproduction promise to illuminate unique cell signaling mechanisms. The exteneded abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

12.
Summary N-CAM180, the molecular form of the three neural cell adhesion molecules (N-CAM) with the largest cytoplasmic domain, is accumulated at sites of cell-cell contact (cell bodies, neurites, growth cones) in cultures of neuroblastoma and cerebellum. At these sites the cytoskeletonmembrane linker protein brain spectrin and actin are also accumulated. Brain spectrin copurifies with N-CAM180 by immunoaffinity chromatography and binds specifically to N-CAM180 but not to N-CAM140 or N-CAM120 in a solid-phase binding test. These observations indicate an association of N-CAM180 with the cytoskeleton in vivo. This association may underlie the reduced lateral mobility of N-CAM180 in the surface membrane compared to N-CAM140 (Pollerberg et al. 1986). Together with the fact that N-CAM180 is only expressed after termination of neuron migration in vivo (Persohn and Schachner, unpublished) these results suggest a role for N-CAM180 in stabilization of cell contacts.  相似文献   

13.
细胞黏附和突触发生   总被引:1,自引:0,他引:1  
Chen G  Wu X  Tuncdemir S 《生理学报》2007,59(6):697-706
突触是神经网络中神经细胞间相互连接的基本工作单位。突触的分子构建是一个引人入胜的问题,数十年来一直吸引着科学家们的注意。冯德培和许多其他科学家早期在神经肌肉接头领域做出了开创性的研究工作。至今,神经肌肉接头仍是一个杰出的突触标本,为我们研究中枢神经系统的突触形成铺平了道路。近期的研究又有新的亮点,发现一组细胞黏附分子具有很强的突触发生作用,使中枢突触形成的分子机制更加明朗。本文综述了这些表达在非神经细胞里能引起中枢突触形成的细胞黏附分子的功能与特性。  相似文献   

14.
An important role of cell matrix adhesion receptors is to mediate transmembrane coupling between extracellular matrix attachment, actin reorganization, and cell spreading. Thrombospondin (TSP)-1 is a modulatory component of matrix expressed during development, immune response, or wound repair. Cell adhesion to TSP-1 involves formation of biochemically distinct matrix contacts based on stable fascin spikes. The cell surface adhesion receptors required have not been identified. We report here that antibody clustering of syndecan-1 proteoglycan specifically transduces organization of cortical actin and fascin bundles in several cell types. Transfection of COS-7 cells with syndecan-1 is sufficient to stimulate cell spreading, fascin spike assembly, and extensive protrusive lateral ruffling on TSP-1 or on syndecan-1 antibody. The underlying molecular mechanism depends on glycosaminoglycan (GAG) modification of the syndecan-1 core protein at residues S45 or S47 for cell membrane spreading and on the VC2 region of the cytoplasmic domain for spreading and fascin spike formation. Expression of the VC2 deletion mutant or GAG-negative syndecan-1 showed that syndecan-1 is necessary in spreading and fascin spike formation by C2C12 cells on TSP-1. These results establish a novel role for syndecan-1 protein in coupling a physiological matrix ligand to formation of a specific matrix contact structure.  相似文献   

15.
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.  相似文献   

16.
Epithelial cell adhesion mechanisms   总被引:5,自引:0,他引:5  
  相似文献   

17.
18.
Abstract Based on a literature review, a hypothesis is forwarded on the mechanism of initial bacterial adhesion to solid substrata, which accounts both for the role of specific microscopic surface components as well as for the role of non-specific macroscopic surface properties (surface free energy, zeta potential or hydrophobicity). Three distinct regions in the adhesion process are suggested in which at large and intermediate separation distances adhesion is mediated by the macroscopic surface properties as surface free energy and surface charge, respectively. At small separation distances specific short-range interactions can occur, leading to a strong and irreversible bonding, provided the water film present in between the interaction surfaces can be removed. A major role of hydrophobic groups, supposed to be associated with bacterial surface appendages is suggested to be its dehydrating capacity, enabling the removal of the vicinal water film yielding small areas of direct contact between protruberant parts of the cell surface and the substratum.  相似文献   

19.
The effects of distant interactions (LRI) and culture air on the adhesion ofPseudomonas fluorescens cells were studied. OneP. fluorescens culture was found to diminish the adhesion of cells of another, glassscreened,P. fluorescens culture by 30% (in the absence o air exchange between cultures). This effect was interpreted to be due to penetrating LRI. Under the combined action ofLRI and culture air (the latter alone reduced cell adhesion by only several percent), the amount of unattached cells increased 2-to 30-fold (on the average, by a factor of nine). Such a great reduction of cell adhesion indicated the synergistic action ofLRI and culture air.  相似文献   

20.
Raf kinase inhibitor protein (RKIP) regulates a number of cellular processes, including cell migration. Exploring the role of RKIP in cell adhesion, we found that overexpression of RKIP in Madin-Darby canine kidney (MDCK) epithelial cells increases adhesion to the substratum, while decreasing adhesion of the cells to one another. The level of the adherens junction protein E-cadherin declines profoundly, and there is loss of normal localization of the tight junction protein ZO-1, while expression of the cell-substratum adhesion protein beta1 integrin dramatically increases. The cells also display increased adhesion and spreading on multiple substrata, including collagen, gelatin, fibronectin and laminin. In three-dimensional culture, RKIP overexpression leads to marked cell elongation and extension of long membrane protrusions into the surrounding matrix, and the cells do not form hollow cysts. RKIP-overexpressing cells generate considerably more contractile traction force than do control cells. In contrast, RNA interference-based silencing of RKIP expression results in decreased cell-substratum adhesion in both MDCK and MCF7 human breast adenocarcinoma cells. Treatment of MDCK and MCF7 cells with locostatin, a direct inhibitor of RKIP and cell migration, also reduces cell-substratum adhesion. Silencing of RKIP expression in MCF7 cells leads to a reduction in the rate of wound closure in a scratch-wound assay, although not as pronounced as that previously reported for RKIP-knockdown MDCK cells. These results suggest that RKIP has important roles in the regulation of cell adhesion, positively controlling cell-substratum adhesion while negatively controlling cell-cell adhesion, and underscore the complex functions of RKIP in cell physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号