首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The branched-chain amino acids (BCAA) are committed to catabolism by the activity of the branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. BCKD activity is regulated through the action of the complex-specific BCKD kinase that phosphorylates two serine residues in the E1alpha subunit. Greater BCKD kinase expression levels result in a lower activity state of BCKD and thus a decreased rate of BCAA catabolism. Activity state varies among tissues and can be altered by diet, exercise, hormones, and disease state. Within individual tissues, the concentration of BCKD kinase reflects the activity state of the BCKD complex. Here we investigated the effects of insulin, an important regulator of hepatic metabolic enzymes, on BCKD kinase expression in Clone 9 rat cells. Insulin effected a twofold increase in message levels and a twofold increase in BCKD kinase protein levels. The response was completely blocked by treatment with LY-294002 and partially blocked by rapamycin, thus demonstrating a dependence on phosphatidylinositol 3-kinase and mTOR function, respectively. These studies suggest that insulin acts to regulate BCAA catabolism through stimulation of BCKD kinase expression.  相似文献   

3.
Papillomaviruses (PVs) bind in a specific and saturable fashion to a range of epithelial and other cell lines. Treatment of cells with trypsin markedly reduces their ability to bind virus particles, suggesting that binding is mediated via a cell membrane protein. We have investigated the interaction of human PV type 6b L1 virus-like particles (VLPs) with two epithelial cell lines, CV-1 and HaCaT, which bind VLPs, and a B-cell line (DG75) previously shown not to bind VLPs. Immunoprecipitation of a mixture of PV VLPs with [35S]methionine-labeled cell extracts and with biotin-labeled cell surface proteins identified four proteins from CV-1 and HaCaT cells of 220, 120, 87, and 35 kDa that reacted with VLPs and were not present in DG75 cells. The alpha6beta4 integrin complex has subunits corresponding to the VLP precipitated proteins, and the tissue distribution of this complex suggested that it was a candidate human PV receptor. Monoclonal antibodies (MAbs) to the alpha6 or beta4 integrin subunits precipitated VLPs from a mixture of CV-1 cell proteins and VLPs, whereas MAbs to other integrin subunits did not. An alpha6 integrin-specific MAb (GoH3) inhibited VLP binding to CV-1 and HaCaT cells, whereas an anti-beta4 integrin MAb and a range of integrin-specific and other MAbs did not. Furthermore, human laminin, the natural ligand for the alpha6beta4 integrin, was able to block VLP binding. By use of sections of monkey esophagus, the distribution of alpha6 integrin expression in the basal epithelium was shown to coincide with the distribution of bound VLPs. Taken together, these data suggest that VLPs bind specifically to the alpha6 integrin subunit and that integrin complexes containing alpha6 integrin complexed with either beta1 or beta4 integrins may act as a receptor for PV binding and entry into epithelial cells.  相似文献   

4.
Production of recombinant pharmaceutical proteins has made a great contribution to modern biotechnology. At present, quick advances in protein expression lead to the enhancement of product quantity and quality as well as reduction in timescale processing. In the current study, we assessed the expression level of recombinant human follicle-stimulating hormone (rhFSH) in adherent and suspension Chinese hamster ovary (CHO) cell lines by cultivation in serum-containing and chemically defined, protein-free media. The expression cassette entailing FSH subunits was transfected to CHO/dhfr- and CHO DG44 cell lines, and gene amplification was achieved using dihydrofolate reductase (DHFR)/methotrexate (MTX) system. Afterward, the expression level of rhFSH was studied using real-time PCR, Western blotting and ELISA. Our achievements revealed that stepwise increase in MTX [up to 2000 nano-molar (nM)] leads to boost the expression level of rhFSH mRNA in both cell lines, although DG44 have better results, as mRNA expression level reached 124.8- and 168.3-fold in alpha and beta subunits, respectively. DG44 cells have also the best protein production in 2000 nM MTX, which reached 1.7-fold in comparison with that of the mock group. According to the above results and many advantages of protein-free media, DG44 is preferable cell line for future steps.  相似文献   

5.
Ninety-five percent of Leber hereditary optic neuropathy (LHON) patients carry a mutation in one out of three mtDNA-encoded ND subunits of complex I. Penetrance is reduced and more male than female carriers are affected. To assess if a consistent biochemical phenotype is associated with LHON expression, complex I- and complex II-dependent adenosine triphosphate synthesis rates (CI-ATP, CII-ATP) were determined in digitonin-permeabilized peripheral blood mononuclear cells (PBMCs) of thirteen healthy controls and for each primary mutation of a minimum of three unrelated patients and of three unrelated carriers with normal vision and were normalized per mitochondrion (citrate synthase activity) or per cell (protein content). We found that in mitochondria, CI-ATP and CII-ATP were impaired irrespective of the primary LHON mutation and clinical expression. An increase in mitochondrial density per cell compensated for the dysfunctional mitochondria in LHON carriers but was insufficient to result in a normal biochemical phenotype in early-onset LHON patients.  相似文献   

6.
The S49 mouse lymphoma mutant cell line Kin- is resistant to the cytotoxic effects of elevated cAMP levels, has no detectable cAMP-dependent protein kinase activity, and has depressed levels of cAMP-binding regulatory subunits. We demonstrate that although the Kin- cell line lacks detectable catalytic subunit protein, these cells express wild-type levels of mRNA for both C alpha and C beta catalytic subunit isoforms. Translation of C alpha mRNA appears to be normal in the Kin- cell, based on the observation that C alpha mRNA associates with large polyribosomes in both wild-type and Kin- cells. We cloned the C alpha cDNA from Kin- cells and show that its transient expression in another cell type leads to activation of a cAMP-sensitive luciferase reporter gene, suggesting that functional C alpha protein is made. In addition to having catalytic activity, the C alpha subunit from Kin- cells is inhibited in the presence of mouse RI alpha regulatory subunit, indicating that formation of the holoenzyme complex is normal. We suggest that the mutation responsible for the Kin- phenotype is in a cellular component that directly or indirectly causes Kin- catalytic subunit protein to be degraded rapidly.  相似文献   

7.
A common metabolic complication of human disease is uncontrolled muscle protein breakdown or cachexia, which occurs in patients with chronic diseases such as cancer, AIDS, renal failure, and diabetes. Increased branched-chain amino acid catabolism is implicated as causal and has stimulated the investigation of methods to regulate the metabolism of these amino acids. Here we demonstrate doxycycline-controlled overexpression of a branched-chain alpha-ketoacid dehydrogenase (BCKD) kinase transgene in mammalian cell culture. This kinase functions to inactivate the BCKD complex by phosphorylation, thus preventing the catabolism of these essential, regulatory metabolites. In this study, doxycycline treatment leads to a 10-fold increase in BCKD kinase protein. The transgene-generated kinase is rapidly incorporated within mitochondria and functions correctly to inactivate the BCKD complex. The maximum reduction in basal BCKD activity achieved was 94%. Unexpectedly, total BCKD activity was also decreased by kinase overexpression despite no observable change in expression of the BCKD catalytic proteins. These results demonstrate that artificial regulation of branched-chain amino acid metabolism is possible through the controlled overexpression of a single endogenous enzyme and suggest the feasibility of clinical applications.  相似文献   

8.
9.
Euglena gracilis cells grown under aerobic and anaerobic conditions were compared for their whole cell rhodoquinone and ubiquinone content and for major protein spots contained in isolated mitochondria as assayed by two-dimensional gel electrophoresis and mass spectrometry sequencing. Anaerobically grown cells had higher rhodoquinone levels than aerobically grown cells in agreement with earlier findings indicating the need for fumarate reductase activity in anaerobic wax ester fermentation in Euglena. Microsequencing revealed components of complex III and complex IV of the respiratory chain and the E1beta subunit of pyruvate dehydrogenase to be present in mitochondria of aerobically grown cells but lacking in mitochondria from anaerobically grown cells. No proteins were identified as specific to mitochondria from anaerobically grown cells. cDNAs for the E1alpha, E2, and E3 subunits of mitochondrial pyruvate dehydrogenase were cloned and shown to be differentially expressed under aerobic and anaerobic conditions. Their expression patterns differed from that of mitochondrial pyruvate:NADP(+) oxidoreductase, the N-terminal domain of which is pyruvate:ferredoxin oxidoreductase, an enzyme otherwise typical of hydrogenosomes, hydrogen-producing forms of mitochondria found among anaerobic protists. The Euglena mitochondrion is thus a long sought intermediate that unites biochemical properties of aerobic and anaerobic mitochondria and hydrogenosomes because it contains both pyruvate:ferredoxin oxidoreductase and rhodoquinone typical of hydrogenosomes and anaerobic mitochondria as well as pyruvate dehydrogenase and ubiquinone typical of aerobic mitochondria. Our data show that under aerobic conditions Euglena mitochondria are prepared for anaerobic function and furthermore suggest that the ancestor of mitochondria was a facultative anaerobe, segments of whose physiology have been preserved in the Euglena lineage.  相似文献   

10.
The 'stalk' is a large ribosomal subunit domain that regulates translation. In the present study the role of the ribosomal stalk P proteins in modulating ribosomal activity has been investigated in human cells using RNA interference. A strong down-regulation of P2 mRNA and a drastic decrease in P2 protein in a stable human cell line was achieved using a doxycycline-inducible system. Interestingly, the amount of P1 protein was similarly decreased in these cells, in contrast with the expression of P1 mRNA. The loss of P1/P2 proteins produced a decrease in the growth rate of these cells, as well as an altered polysome pattern with reduced translation efficiency, but without affecting the free 40 S/60 S subunit ratio. A decrease in the ribosomal-subunit joining capacity was also observed. These data indicate that P1/P2 proteins modulate cytoplasmic translation by influencing the interaction between subunits, thereby regulating the rate of cell proliferation.  相似文献   

11.
12.
Dihydrolipoamide succinyltransferase (DLST) is a subunit enzyme of the alpha-ketoglutarate dehydrogenase complex of the Krebs cycle. While studying how the DLST genotype contributes to the pathogenesis of Alzheimer's disease (AD), we found a novel mRNA that is transcribed starting from intron 7 in the DLST gene. The novel mRNA level in the brain of AD patients was significantly lower than that of controls. The truncated gene product (designated MIRTD) localized to the intermembrane space of mitochondria. To investigate the function of MIRTD, we established human neuroblastoma SH-SY5Y cells expressing a maxizyme, a kind of ribozyme, that specifically digests the MIRTD mRNA. The expression of the maxizyme specifically eliminated the MIRTD protein and the resultant MIRTD-deficient cells exhibited a marked decrease in the amounts of subunits of complexes I and IV of the mitochondrial respiratory chain, resulting in a decline of activity. A pulse-label experiment revealed that the loss of the subunits is a post-translational event. Thus, the DLST gene is bifunctional and MIRTD transcribed from the gene contributes to the biogenesis of the mitochondrial respiratory complexes.  相似文献   

13.
14.
Abnormalities in the interactions of cells with the extracellular matrix (ECM) play an important role in the development and progression of many types of cancer and are a hallmark of malignant transformation. The dystroglycan (DG) complex is a transmembrane glycoprotein that forms a continuous link from the ECM to the actin cytoskeleton, providing structural integrity and perhaps transducing signal, in a manner similar to integrins. Deregulated expression of DG has been reported in a variety of human malignancies and related to tumor differentiation and aggressiveness. In breast cancer, reduced DG expression has been associated with patient survival and with loss of differentiation of tumor cells. Limited data are available on DG physiology in epithelial cells. In this study, we used the HC11 spontaneously immortalized murine mammary epithelial cells to study DG function(s) and regulation in normal cells. We found that expression of DG protein and mRNA is cell-cycle and cell-density regulated in these cells. Moreover, expression of both DG subunits increased upon lactogenic differentiation of the HC11 cells. The turnover of cell-surface-expressed DG was evaluated in the same cells and half-life of DG subunits was evaluated to be about 12 h. DG-specific small inhibitory RNAs were used to analyze the effects of a reduced expression of DG in these cells. Cells in which DG expression was suppressed were growth inhibited, accumulated in the S-phase of the cell cycle, failed to undergo lactogenic differentiation, and displayed an increase in the percentage of apoptotic cells. Moreover, changes were observed in the expression and/or activity of several molecules involved in cell growth control. These results demonstrate that DG expression is tightly regulated in normal mammary epithelial cells and support the hypothesis that DG is involved in several functions other than structural integrity in these cells. This finding provides new insight into the roles played by DG in epithelial cell physiology and will contribute to our understanding of its involvement in the process of epithelial cell transformation.  相似文献   

15.
The catabolic pathways of branched-chain amino acids have two common steps. The first step is deamination catalyzed by the vitamin B(6)-dependent branched-chain aminotransferase isozymes (BCATs) to produce branched-chain alpha-keto acids (BCKAs). The second step is oxidative decarboxylation of the BCKAs mediated by the branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKD complex). The BCKD complex is organized around a cubic core consisting of 24 lipoate-bearing dihydrolipoyl transacylase (E2) subunits, associated with the branched-chain alpha-keto acid decarboxylase/dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), BCKD kinase, and BCKD phosphatase. In this study, we provide evidence that human mitochondrial BCAT (hBCATm) associates with the E1 decarboxylase component of the rat or human BCKD complex with a K(D) of 2.8 microM. NADH dissociates the complex. The E2 and E3 components do not interact with hBCATm. In the presence of hBCATm, k(cat) values for E1-catalyzed decarboxylation of the BCKAs are enhanced 12-fold. Mutations of hBCATm proteins in the catalytically important CXXC center or E1 proteins in the phosphorylation loop residues prevent complex formation, indicating that these regions are important for the interaction between hBCATm and E1. Our results provide evidence for substrate channeling between hBCATm and BCKD complex and formation of a metabolic unit (termed branched-chain amino acid metabolon) that can be influenced by the redox state in mitochondria.  相似文献   

16.
We have applied multicolor BiFC to study the association preferences of G protein beta and gamma subunits in living cells. Cells co-express multiple isoforms of beta and gamma subunits, most of which can form complexes. Although many betagamma complexes exhibit similar properties when assayed in reconstituted systems, knockout experiments in vivo suggest that individual isoforms have unique functions. BiFC makes it possible to correlate betagamma complex formation with functionality in intact cells by comparing the amounts of fluorescent betagamma complexes with their abilities to modulate effector proteins. The relative predominance of specific betagamma complexes in vivo is not known. To address this issue, multicolor BiFC can determine the association preferences of beta and gamma subunits by simultaneously visualizing the two fluorescent complexes formed when beta or gamma subunits fused to amino terminal fragments of yellow fluorescent protein (YFP-N) and cyan fluorescent protein (CFP-N) compete to interact with limiting amounts of a common gamma or beta subunit, respectively, fused to a carboxyl terminal fragment of CFP (CFP-C). Multicolor BiFC also makes it possible to determine the roles of interacting proteins in the subcellular targeting of complexes, study the formation of protein complexes that are unstable under isolation conditions, determine the roles of co-expressed proteins in regulating the association preferences of interacting proteins, and visualize dynamic events affecting multiple protein complexes. These approaches can be applied to studying the assembly and functions of a wide variety of protein complexes in the context of a living cell.  相似文献   

17.
Prostate cancer, the most frequently diagnosed cancer in Western men, can display a high variability in term of clinical aggressiveness and prognosis and none of the available markers is able to accurately predict its clinical course. Dystroglycan (DG), a non-integrin adhesion molecule, is a complex formed by two subunits, alpha- and beta-DG, which bind to extracellular matrix molecules and cytoskeleton, respectively. DG expression is frequently reduced in human cancers and has been related to tumor grade and aggressiveness. This study investigated the role of DG in human prostate tumorigenesis and its suitability as a prognostic marker. The expression level of extracellular alpha-DG subunit was frequently reduced in human prostate cancer cell lines and primary tumors and the percentage of positive tumor cells was significantly further decreased in vivo following androgen ablation therapy (median = 1%) compared to pre-treatment samples (median = 28%). A significant relationship was observed between alpha-DG staining on the post-treatment samples and tumor recurrence. A dose- and time-dependent decrease of DG expression also occurred in human prostate cancer cells following treatment with the anti-androgen flutamide. Stable expression of an exogenous DG cDNA in the LNCaP human prostate carcinoma cell line resulted in a marked inhibition of both anchorage-dependent and independent growth and of the in vivo tumorigenicity. These findings confirm and extend previous evidence that disturbances in the function of the DG complex might contribute to the definition of the malignant behavior of prostate cancer cells and suggest that androgens might regulate DG expression in these cells.  相似文献   

18.
The life and death of T cells is controlled to a large extent by the relative amounts of Bcl-2-related proteins they contain. The antiapoptotic protein Bcl-2 and the proapoptotic protein Bim are particularly important in this process with the amount of Bcl-2 per cell dropping by about one-half when T cells prepare to die. In this study we show that Bcl-2 and Bim each control the expression of the other. Absence of Bim leads to a drop in the amount of intracellular Bcl-2 protein, while having no effect on the amounts of mRNA for Bcl-2. Conversely, high amounts of Bcl-2 per cell allow high amounts of Bim, although in this case the effect involves increases in Bim mRNA. These mutual effects occur even if Bcl-2 is induced acutely. Thus these two proteins control the expression of the other, at either the protein or mRNA level.  相似文献   

19.
NOR1基因是新的鼻咽癌相关基因,该基因在鼻咽癌细胞系HNE1和鼻咽癌组织中表达下调.在鼻咽癌细胞HNE1中恢复NOR1基因表达抑制了鼻咽癌细胞的生长和增殖能力.为了探讨NOR1基因的生物学功能,以NOR1基因为诱饵运用酵母双杂交技术在人胎脑文库中筛选其交互作用蛋白,挑选阳性克隆,进行DNA序列分析和同源检索,阳性克隆编码7个不同的蛋白质,其中一个阳性克隆编码线粒体ATP合成酶亚基OSCP蛋白.瞬时转染pCMV-myc-NOR1质粒进入鼻咽癌5-8F细胞,通过密度梯度离心法分离线粒体蛋白,Western blot检测表明myc-NOR1蛋白分布于线粒体与胞浆.免疫荧光检测表明在鼻咽正常上皮细胞NP69中内源性NOR1蛋白与线粒体存在明显共定位.随后采用特异性酵母双杂交、免疫荧光共定位、免疫共沉淀技术证实了NOR1与OSCP在线粒体内存在交互作用.提示,NOR1是一个新的线粒体蛋白,可能通过结合OSCP蛋白调控细胞能量代谢,为深入探讨其功能提供了重要线索.  相似文献   

20.
The presence of several proteins of complex III of the respiratory chain has been demonstrated in mitochondria from a mutant of Saccharomyces cerevisiae lacking 5-aminolevulinic acid synthase and, hence, devoid of heme. The two 'core' proteins, apocytochrome b and the iron-sulfur protein, were observed in equal amounts in the heme-deficient and heme-sufficient cells with antiserum against complex III and the sensitive immuno-transfer technique. In addition, three other bands were detected with the complex III antiserum in the mitochondria from the cells lacking heme. One of these has a molecular weight similar to that reported for a precursor form of cytochrome c1. By contrast, when mitochondria from the heme-deficient cells were solubilized with mild detergents and treated with the complex III antiserum, almost no immunoprecipitation was obtained above that obtained with control serum. The presence of only one major labeled band with a molecular weight similar to subunit I was observed after gel electrophoresis. These results suggest that heme may be necessary for proper processing of the apoprotein of cytochrome c1 and for the assembly into the membrane of the subunits of complex III, rather than for the synthesis of the proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号