共查询到7条相似文献,搜索用时 15 毫秒
1.
S.E. Shoemaker H. Hyatt Sachs S.A. Vaccariello R.E. Zigmond 《Developmental neurobiology》2006,66(12):1322-1337
Axotomized peripheral neurons are capable of regeneration, and the rate of regeneration can be enhanced by a conditioning lesion (i.e., a lesion prior to the lesion after which neurite outgrowth is measured). A possible signal that could trigger the conditioning lesion effect is the reduction in availability of a target‐derived factor resulting from the disconnection of a neuron from its target tissue. We tested this hypothesis with respect to nerve growth factor (NGF) and sympathetic neurons by administering an antiserum to NGF to adult mice for 7 days prior to explantation or dissociation of the superior cervical ganglion (SCG) and subsequently measuring neurite outgrowth. The antiserum treatment dramatically lowered the concentration of NGF in the SCG and increased the rate of neurite outgrowth in both explants and cell cultures. The increase in neurite outgrowth was similar in magnitude to that seen after a conditioning lesion. To determine if exogenous NGF could block the effect of a conditioning lesion, mice were injected with NGF or cytochrome C immediately prior to unilateral axotomy of the SCG, and for 7 days thereafter. A conditioning lesion effect of similar magnitude was seen in NGF‐treated and control animals. While NGF treatment increased NGF levels in the contralateral control ganglion, it did not significantly elevate levels in the axotomized ganglion. The results suggest that the decreased availability of NGF after axotomy is a sufficient stimulus to induce the conditioning lesion effect in sympathetic neurons. While NGF administration did not prevent the conditioning lesion effect, this may be due to the markedly decreased ability of sympathetic neurons to accumulate the growth factor after axotomy. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 相似文献
2.
3.
Chronic exposure to a 60-Hz electric field: effects on synaptic transmission and peripheral nerve function in the rat 总被引:2,自引:0,他引:2
Several reports have suggested that the nervous system can be affected by exposure to electric fields and that these effects may have detrimental health consequences for the exposed organism. The purpose of this study was to investigate the effects of chronic (30-day) exposure of rats to a 60Hz, 100-kV/m electric field on synaptic transmission and peripheral-nerve function. One hundred forty-four rats, housed in individual polycarbonate cages were exposed to uniform, vertical, 60-Hz electric fields in a system free of corona discharge and ozone formation and in which the animals did not receive spark discharges or other shocks during exposure. Following 30 days of exposure to the electric field, superior cervical sympathetic ganglia, vagus and sciatic nerves were removed from rats anesthetized with urethan, placed in a temperature-controlled chamber, and superfused with a modified mammalian Ringer's solution equilibrated with 95% O2 and 5% CO2. Several measures and tests were used to characterize synaptic transmission and peripheral-nerve function. These included amplitude, area, and configuration of the postsynaptic or whole-nerve compound-action potential; conduction velocity; accommodation; refractory period; strength-duration curves; conditioning-test (C-T) response, frequency response; post-tetanic response; and high-frequency-induced fatigue. The results of a series of neurophysiologic tests and measurements indicate that only synaptic transmission is significantly and consistently affected by chronic (30-day) exposure to a 60-Hz, 100-kV/m electric field. Specifically, and increase in synaptic excitability was detected in replicated measurements of the C-T response ratio. In addition, there are trends in other data that can be interpreted to suggest a generalized increase in neuronal excitability in exposed animals. 相似文献
4.
Cowen T. Jenner C. Song Gu Xiao Santoso A. W. Budi Gavazzi I. 《Neurochemical research》1997,22(8):1003-1011
Whilst the potent effects of NGF and laminin on developing neurons are well documented, relatively little is known about the effects of, or altered availability of or altered responsiveness to, these substances on the growth of adult neurons. We have therefore examined this question using explant cultures of sympathetic neurons from the superior cervical ganglion (SCG) of mature and aged rats. Explants were grown on substrata containing different doses of laminin, either with or without added NGF in culture medium containing FCS. Individually, laminin and NGF had relatively small effects on neurite outgrowth and length, which tended to be reduced in old neurons. In contrast, laminin in the presence of exogenous NGF exerted a powerful effect on nerve growth which was substantially greater than the sum of the effects of the individual factors. This synergy was evident in all experimental groups and was greatest in old explants at high doses of laminin, where growth was comparable to that of mature neurons. The dose-response curve of old neurons to laminin in the presence of added NGF indicated reduced responsiveness. These results suggest that variations in the availability of laminin and/or exogenous NGF, together with altered patterns of neuronal responsiveness, may contribute to impaired neuronal plasticity in old age. 相似文献
5.
Ríos-Muñoz W Soto I Duprey-Díaz MV Blagburn J Blanco RE 《Journal of neurochemistry》2005,93(6):1422-1433
We have shown that application of basic fibroblast growth factor (FGF-2) to axotomized optic nerve promotes the survival of frog retinal ganglion cells (RGCs). In the present study we used western blotting and immunocytochemistry to investigate the effects of this FGF-2 treatment upon the activation of the extracellular signal-regulated kinase (ERK) pathway, the amounts and distribution of Bcl-2 family proteins, and the activation of caspase-3. Axotomy alone temporarily increased ERK activation; FGF-2 treatment to the nerve prolonged this activation. This effect was blocked by U0126, a selective ERK kinase (MEK) inhibitor. Axotomy caused a decrease in Bcl-2 and a small increase in Bcl-x(L). FGF-2 treatment caused an ERK-dependent increase in Bcl-2 and an ERK-independent increase in Bcl-x(L). The pro-apoptotic Bax was increased by axotomy; FGF-2 treatment greatly decreased Bax levels, an effect that was inhibited by U0126. Axotomy induced the cleavage of caspase-3; FGF-2 treatment blocked this effect in an ERK-dependent manner. Finally, intraocular application of the MEK inhibitor caused a large reduction in the survival-promoting effect that FGF-2 application to the nerve stump had on RGCs. Our results suggest that FGF-2 acts, at least in part, via the ERK pathway to prevent apoptosis of axotomized RGCs not only by increasing amounts of anti-apoptotic proteins, but also by a striking reduction in the levels of apoptotic effectors themselves. 相似文献
6.
K Nagaiah P MacDonnell G Guroff 《Biochemical and biophysical research communications》1977,75(4):832-837
The addition of dexamethasone and nerve growth factor to organ cultures of superior cervical ganglia from young rats induces the synthesis of tyrosine hydroxylase. The combination of nerve growth factor and dexamethasone produces a differential rate of tyrosine hydroxylase synthesis which approaches that obtained by the administration of nerve growth factor. 相似文献
7.
E. D. Peebles J. Croom W. R. Maslin S. K. Whitmarsh L. R. Daniel I. L. Taylor 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2001,130(4):741
The effects of in ovo peptide YY (PYY) or epidermal growth factor (EGF) administration on chick growth, yolk absorption and yolk stalk function in posthatch (0–5 days) meat-type or broiler chicks were determined. At Day 18 of incubation, treated eggs were injected into the air cell with 100 μl of either PYY (Trial 1) or EGF (Trial 2) at a dosage of 600 μg/kg egg weight. Saline-treated control eggs were injected similarly with 0.9% saline. At hatch, 200 μl of 51Cr-labeled microspheres were injected into chick yolk sacs. Epidermal growth factor increased ileal wet weight adjusted for body weight as well as ileal serosal dry matter. Body weight, feed consumption and excreta weight per bird, and relative weights of the yolk sac, intestine and liver were significantly affected by age of the chick in both trials. Relative radioactivity of the yolk sac, yolk stalk, blood, liver, and kidneys were affected by bird age in Trial 2; however, there were no significant effects due to PYY or EGF treatments on relative radioactivity of the tissues and organs examined. These data suggest that PYY and EGF had no effect on yolk absorption or yolk stalk function through 5 days in the posthatch chick. 相似文献