首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine species are increasingly important as a source of specific biological active metabolites. Marine species comprise almost half of global biodiversity. Oceans and sea are thus the biggest source of positive natural compounds that could be utilized in the pharmaceutical industry as functional constituents. In the present study was to find out the wound healing property of the bioactive compounds from Micrococcus sp. OUS9 isolated from marine source. The in vivo wound healing activity was studied using excision wound model. The KLUF 10 and KLUF13 ointment was prepared and used to determine wound healing activity in albino rats. Topical application of the ointment enhanced the contraction of wound in contrast with rat control group. KLUF13 had shown strong healing ability in wounds and had a positive influence on the various phases of wound repair.  相似文献   

2.
Ho RC  Davy KP  Hickey MS  Melby CL 《Cytokine》2005,30(1):14-21
Mexican Americans (MA) exhibit high risk for the insulin resistance syndrome characterized by subclinical inflammation and greater risk for type 2 diabetes compared with non-Hispanic white (NHW) adults. The reasons for this phenomenon remain obscure. Because the inflammatory cytokine, tumor necrosis factor-alpha (TNF alpha), is associated with insulin resistance in various models of obesity and diabetes, we sought to determine whether circulating concentrations of this cytokine and its soluble receptors are higher in MA than NHW, and also to determine if the TNF alpha system is related to the lower insulin sensitivity in MA. Fasting blood samples were used to determine concentrations of TNF alpha, soluble TNF receptors 1 (sTNFR1) and 2 (sTNFR2) in the same 13 MA (7 women, 6 men, age=27.0+/-2.0 years, BMI=23.0+/-0.7) and 13 NHW (7 women, 6 men, age=24.8+/-1.5 years, BMI=22.8+/-0.6) previously shown to exhibit differences in insulin sensitivity. Circulating TNF alpha was significantly higher (3.11+/-0.38 vs. 2.10+/-0.24 pg/ml, p<0.05) and sTNFR2 was significantly lower (1324+/-85 vs. 1925+/-127 pg/ml, p<0.05) among MA compared with NHW subjects. Soluble TNFR1 was not different between groups (MA: 970+/-111 pg/ml vs. NHW: 1218+/-73 pg/ml, p=0.07). TNF alpha, sTNFR1 and sTNFR2 were not correlated with HOMA-IR when the two groups were analyzed in aggregate. This study documents higher circulating TNF alpha concentrations in non-obese, non-diabetic MA, a population group at increased risk for the metabolic syndrome and the untoward effects of sub-clinical inflammation. The clinical implications of this difference, if any, are not yet known.  相似文献   

3.
Lipopolysaccharide (LPS, endotoxin) is a potent stimulator of tumor necrosis factor alpha (TNF alpha) synthesis and secretion in mouse macrophage tumor cells (Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K., and Raetz, C. H. R. (1991) J. Biol. Chem. 266, 19490-19498). In contrast, addition of LPS (10 ng/ml) to human monomyelocytic (Mono Mac 6) cells induces very little production of TNF alpha, as judged by immunoassay of the growth medium. When 30 ng/ml 4-beta-phorbol-12-myristate 13-acetate (PMA) is added together with LPS, large amounts of TNF alpha are secreted. PMA alone is inactive. Maximal TNF alpha levels in the medium are achieved at 1 ng/ml of LPS. Protein kinase C inhibitors, such as H7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine), staurosporine, and sphingosine, reduce TNF alpha secretion stimulated by PMA. The effect of PMA has been investigated at each stage of TNF alpha biogenesis. Treatment of Mono Mac 6 cells with LPS alone results in rapid, transient, and full expression of TNF alpha mRNA. Concomitant addition of PMA does not increase TNF alpha mRNA synthesis any further, but it prolongs the half-life of TNF alpha mRNA about 3-fold. However, mRNA stabilization does not account for the striking effect of PMA on TNF alpha secretion. Analysis of TNF alpha synthesis and secretion by immunoprecipitation indicates that LPS alone is fully effective in stimulating the formation of the intracellular 26-kDa TNF alpha precursor. LPS alone is not sufficient to allow processing of the precursor and secretion of mature 17-kDa TNF alpha. The rate of TNF alpha secretion observed immediately after the addition of PMA to LPS-pretreated cells is similar to the maximum rate from LPS/PMA-treated cells, but without the lag observed in cells after being exposed to LPS and PMA simultaneously. In summary, PMA is required for the completion of TNF alpha precursor processing and secretion in LPS-treated human Mono Mac 6 cells, whereas murine RAW cells are able to complete the terminal steps of TNF alpha processing in the absence of PMA.  相似文献   

4.
Cytokines with bone-resorbing activity include IL 1 beta (pI 7), IL 1 alpha (pI 5), tumor necrosis factor (TNF), and lymphotoxin (LT). Possible interaction between IL 1 beta, the major mediator with osteoclast-activating factor (OAF) activity, and other cytokines was studied. By itself, IL 1 beta was 13-fold more potent than IL 1 alpha and 1000-fold more potent than either TNF or LT in stimulating bone resorption. Suboptimal concentrations of IL 1 beta or IL 1 alpha in combination with suboptimal concentrations of TNF or LT resulted in synergistic bone-resorptive responses (1.5 to 10 times the expected responses if their effects were additive). Synergy between either form of IL 1 and TNF or LT resulted in a twofold increase in activity of IL 1, and a 100-fold increase in activity of TNF or LT. However, even with optimal synergy, IL 1 beta remained 20-fold more potent in inducing bone resorption than TNF or LT. Because IL 1 beta is considerably more potent than TNF and LT in stimulating bone resorption either alone or under synergistic conditions, it is unlikely that TNF and LT are responsible for more than a minor proportion of the total bone-resorbing activity formerly referred to as OAF.  相似文献   

5.
This study was performed in order to examine whether the uraemic toxin, methylguanidine (MG), can modulate tumor necrosis factor alpha (TNF alpha) release by activated macrophages. In this study we have evaluated the ability of MG to influence TNF alpha release in vitro, in Escherichia coli lypopolysaccharide- (LPS)-stimulated J774 cells preincubated overnight with MG, and in vivo in rats treated with MG before and after LPS challenge. Parallel experiments employing N(G)-nitro-L-arginine methyl esther (L-NAME) were also carried out for comparison. The effect of LPS (6 x 10(3) u/ml) on TNF alpha release by J774, following overnight incubation with MG or L-NAME (1 mM), was examined 3 hours after LPS challenge. LPS-stimulated J774 released 287.83+/-88 u/ml TNF alpha into the culture medium. MG (1 mM) significantly inhibited TNF alpha release by 73% (P<0.05). L-NAME (1 mM) significantly inhibited TNF alpha release too by 72.88% (P<0.05). The effect of MG and L-NAME have been also studied in vivo. Serum TNF alpha levels in LPS treated rats 2 h after LPS challenge were 88.33+/-31.7 u/ml as compared to the serum TNF alpha levels of control rats (undetectable). Treatment of rats with MG (30 mg/kg, i.p.) strongly and significantly reduced TNF alpha release (98.71% inhibition; with P<0.001); in the same experimental setting L-NAME (10 mg/kg, i.p.) also significantly reduced TNF alpha serum levels (76.47% inhibition; with P<0.01). These results could indicate that immune disfunction related to uremia may be related to the inhibitory capability of uremic catabolyte, MG, on TNF alpha synthesis and release.  相似文献   

6.
7.
8.
Activation of c-Jun amino-terminal kinase (JNK) facilitates tumour necrosis factor (TNF)-induced cell death. The p38 mitogen-activated protein kinase pathway is induced by TNF stimulation, but it has not been implicated in TNF-induced cell death. Here, we show that hepatocyte-specific ablation of p38alpha in mice results in excessive activation of JNK in the liver after in vivo challenge with bacterial lipopolysaccharide (LPS). Despite increased JNK activity, p38alpha-deficient hepatocytes were not sensitive to LPS/TNF toxicity showing that JNK activation was not sufficient to mediate TNF-induced liver damage. By contrast, LPS injection caused liver failure in mice lacking both p38alpha and IkappaB kinase 2 (IKK2) in hepatocytes. Therefore, when combined with partial nuclear factor-kappaB inhibition, p38alpha deficiency sensitizes the liver to cytokine-induced damage. Collectively, these results reveal a new function of p38alpha in collaborating with IKK2 to protect the liver from LPS/TNF-induced failure by controlling JNK activation.  相似文献   

9.
A peptide with binding properties for tumor necrosis factor (TNF alpha) sequence 144-157 has been designed, using a computer-assisted method able to create peptide sequences hydropathically complementary to a given sequence. The complementary peptide was synthesized in a multimeric form starting from an octadentate polylysine core, to facilitate its immobilization and to provide interaction multivalency. Once immobilized on a solid support to prepare an affinity column, it recognized the target TNF144-157 peptide selectively from crude peptide mixtures containing TNF fragments encompassing the entire TNF alpha sequence. Similar selectivity and specificity were shown for full-length recombinant TNF alpha, allowing its purification from crude Escherichia coli extracts. The octameric complementary peptide preserved its recognition properties for TNF alpha and biotinylated TNF alpha even after coating on microtiter plates. Competitive binding occurred with unlabeled TNF alpha in the range between 0.01 and 10 micrograms/ml, in the presence of detergent such as 0.05% Tween 20 and in the presence of 1% normal goat serum. The effect of complementary peptide multimerization was evidenced by its enhanced binding affinity for TNF alpha, which exists in solution as a trimer, while the target TNF[144-157] peptide was recognized with much lower strength. The dissociation constant for interaction with TNF alpha was close to 10 nM, allowing its easy detection by solid phase assays in concentrations as low as 10 pmol/ml.  相似文献   

10.
Three stable murine hybridoma cell lines, which secrete monoclonal antibodies (mAb) to human tumor necrosis factor alpha (TNF alpha), were established. None of the monoclonal antibodies cross-reacted with lymphotoxin, interleukin 2 (IL 2) or Interferon gamma (IFN gamma). The highly species-specific monoclonal antibody, designated as mAb 195, neutralizes the cytotoxic activity of human and chimpanzee TNF alpha. This antibody was further used during in vivo studies to neutralize human TNF alpha in a murine animal model. The mAb 114 is a weakly neutralizing antibody that binds to a different epitope of TNF alpha than mAb 195. mAb 114 shows a wide range of cross-reactivity with TNF alpha of the following species: dog, pig, cynomolgus, rhesus, baboon and chimpanzee. The mAb 199 binds to human TNF alpha, but does not neutralize the cytotoxic activity. The epitope recognized by this mAb is in close proximity to mAb 114. A reproducible, sensitive immunoassay for human TNF7 alpha has been developed using the antibodies mAb 199 and mAb 195. The test is performed within 6 hr and detects TNF7 alpha in serum samples, with a limit of detection of 5 to 10 pg/mL.  相似文献   

11.
The link between cell adhesion to extracellular matrix and integrin-mediated survival signals has been established in several physiological systems, and roles for the cytokines tumor necrosis factor alpha (TNF alpha) and transforming growth factor alpha (TGF alpha) have been suggested. TGF alpha stimulates fibronectin production in hen granulosa cells and is an important survival factor during follicular maturation. In contrast, the role of TNF alpha and its possible interaction with TGF alpha in the regulation of granulosa cell fate (death versus survival) during ovarian follicular development have not been fully elucidated. The object of the current study was to determine if TNF alpha and TGF alpha interact in the regulation of hen granulosa cell fibronectin and integrin content in the context of cell death and survival during follicular development. TGF alpha (0.1 or 10 ng/ml), but not TNF alpha (0.1 or 10 ng/ml), increased both cellular and secreted fibronectin content in granulosa cell cultures of F5,6 but not F1 follicles. The expression of integrin beta(3) subunit was also stimulated by TGF alpha in a follicular stage-dependent manner, and culture of F5,6 granulosa cells with TNF alpha in the presence of maximal stimulatory concentrations of TGF alpha potentiated this response. TGF alpha increased both F5,6 and F1 granulosa cell [(3)H]thymidine incorporation but not 3-(4,5-dimethylthiazol-2-yl)3,5-diphenyl tetrazolium bromide (MTT) metabolism. Although TNF alpha had no effect on [(3)H]thymidine incorporation irrespective of the presence of the growth factor, MTT metabolism was higher in F5,6 granulosa cells cultured for 24 h with both TNF alpha and TGF alpha than with either cytokine alone. Incubation of F5,6 granulosa cells for 48 and 72 h resulted in a TGF alpha-inhibited loss of cellular adhesion and detachment of granulosa cells from the growth surface. Although TNF alpha alone had no effect on cell morphology, it facilitated the reorganization of the granulosa cells into multicellular follicle-like structures in the presence of the growth factor. DNA degradation significantly increased between 0 and 72 h of culture in the absence of the cytokine but was suppressed by the addition of TGF alpha but not of TNF alpha. However, fluorometric analysis indicated that the primary type of cell death exhibited by F5,6 granulosa cells during extended culture and attenuated by the presence of TNF alpha and TGF alpha was necrosis and not apoptosis. The current study demonstrates that TNF alpha and TGF alpha interact in the regulation of granulosa cell integrin content and cell survival in vitro in a follicular stage-dependent manner. These findings suggest that follicular development is accompanied by a change in the intraovarian role of TNF alpha; it is atretogenic prior to follicular selection but prevents follicular demise during preovulatory growth.  相似文献   

12.
13.
The cytokine tumor necrosis factor-alpha (TNF alpha) is one of the major mediators of septic shock. Because vasodilation is a hallmark of sepsis and decreased vascular responsiveness has been implicated in the pathogenesis of septic shock, we studied the effect of TNF alpha on the mean blood pressure in conscious rats and vascular responsiveness to vasoconstrictors ex vivo using the standard organ bath method. Intravenous infusion of TNF alpha (0.006 or 0.06 mg/kg/hr for 10 hours) decreased mean blood pressure in a dose-dependent fashion. Contractile responses to norepinephrine were depressed dose-dependently in the aortic rings both with and without its endothelium. Aortic contractions by potassium depolarization were also depressed. These results suggest that TNF alpha induces non-specific vascular hyporesponsiveness, which is independent of the presence of the endothelium. The TNF alpha-induced vascular hyporesponsiveness might contribute to the hypotensive action of TNF alpha.  相似文献   

14.
F Yanaga  S P Watson 《FEBS letters》1992,314(3):297-300
Tumor necrosis factor alpha (TNF alpha) stimulated rapid (seconds) hydrolysis of sphingomyelin in HL-60 cells, formation of phosphocholine (PCho) and a decrease in choline. The response to TNF alpha was concentration dependent with a maximal effect at 3-10 nM. The monoclonal antibody (mAb), htr-9, which behaves as an agonist at the 55 kDa subtype of the TNF receptor, also stimulated sphingomyelin hydrolysis in intact cells. In contrast, the mAb, utr-1, which behaves as an antagonist at the 75 kDa receptor subtype, had no effect on sphingomyelin hydrolysis either on its own or in the presence of TNF alpha. In addition, htr-9 or TNF alpha stimulated hydrolysis of sphingomyelin in a membrane fraction of HL-60 cells. These results are consistent with a role of sphingomyelin hydrolysis as an early event in the signalling mechanism of TNF alpha, and suggest that this pathway is activated through the 55 kDa subtype of the TNF receptor.  相似文献   

15.
We examined the effect of tumor necrosis factor alpha (TNF alpha) on the increase in pulmonary microvascular endothelial monolayer permeability induced by activated neutrophils (PMN). Layering of PMN onto endothelial monolayers followed by activation of PMN with phorbol 12-myristate 13-acetate (PMA) increased 125I-albumin clearance rate across the monolayers. Pretreatment of endothelial monolayers for 6 hr with TNF alpha (200 U/ml) potentiated the PMN-dependent increase in endothelial permeability, whereas 1 hr or 6 hr pretreatment of endothelial monolayers with 200 U/ml and 100 U/ml, respectively, TNF alpha did not enhance the response. Adherence of PMN to the endothelial cells was increased at 1 and 6 hr after TNF alpha (200 U/ml) treatment, but the adherence response was markedly greater following 6 hr of TNF alpha. The TNF alpha treatment of endothelial cells did not enhance neutrophil activation responses to PMA. Pretreatment of PMN with IB4, a MAb to the CD18 integrin, the common beta subunit of the adhesion proteins LFA-1, Mac-1, and p150,95 of PMN, reduced the increases in PMN adherence and the endothelial monolayer permeability induced by the 6 hr TNF alpha treatment. In contrast, pretreatment of PMN with OKM-1, a MAb to the CD11b epitope (alpha-subunit), had no effect on the adherence and the potentiation of the increase in permeability. The potentiation of the PMN-dependent permeability increase and enhanced endothelial adhesivity at 6 hr after TNF alpha priming of endothelial cells was dependent on protein synthesis. The results indicate that protein synthesis-dependent expression of an endothelial ligand for CD18 and resultant endothelial hyperadhesiveness potentiates the PMN-mediated increase in endothelial permeability after TNF alpha activation of endothelial cells. The priming of endothelial cells by TNF alpha may be a critical step in the mediation of endothelial injury.  相似文献   

16.
Activated microglia have been suggested to produce a cytotoxic cytokine, tumor necrosis factor alpha (TNF alpha), in many pathological brains. Thus, determining the molecular mechanism of this induction and suppression has been the focus of a great deal of research. Using lipopolysaccharide (LPS) as an experimental inducer of TNF alpha, we investigated the regulatory mechanism by which TNFalpha is induced or suppressed in microglia. We found that LPS-induced TNF alpha is suppressed by pretreatment with the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580. Similar suppression was achieved by pretreatment with specific protein kinase C (PKC) inhibitors, G?6976, myristoylated pseudosubstrate (20-28), and bisindolylmaleimide. These results suggest that PKC alpha activity as well as p38MAPK activity is associated with TNF alpha induction in LPS-stimulated microglia. The requirement of PKC alpha in LPS-dependent TNFalpha induction was verified in PKC alpha-downregulated microglia which could be induced by phorbol-12-myristate-13-acetate pretreatment. Simultaneously, PKC alpha was found to be requisite for the activation of p38MAPK in LPS-stimulated microglia. In addition, the PKC alpha levels in the LPS-stimulated microglia were observed to decrease in response to the p38MAPK inhibitor, indicating that the PKC alpha levels are regulated by the p38MAPK activity. We therefore concluded that PKC alpha and p38MAPK are interactively linked to the signaling cascade inducing TNFalpha in LPS-stimulated microglia, and that in this cascade, PKC alpha is requisite for the activation of p38MAPK, leading to the induction of TNF alpha.  相似文献   

17.
The effect of bacterial lipopolysaccharide (LPS) on macrophage receptors for tumor necrosis factor/cachectin (TNF-R) was studied. At equilibrium, iodinated recombinant human TNF alpha (rTNF alpha) bound to 1100 +/- 200 sites/cell on macrophage-like RAW 264.7 cells with a Kd of 1.3 +/- 0.1 x 10(-9) M. Preexposure of RAW 264.7 cells to 10 ng/ml LPS for 1 h at 37 degrees C resulted in complete loss of cell surface TNF alpha binding sites. 50% loss ensued after 1 h with 0.6 ng/ml LPS, or after 15 min with 10 ng/ml LPS. Complete loss of TNF alpha binding sites occurred without change in numbers of complement receptor type 3. No decrease in TNF-R followed preexposure to LPS at 4 degrees C, nor could LPS displace 125I-rTNF alpha from its binding sites. Although TNF-R disappeared from the surface of intact macrophages following exposure to LPS, specific TNF alpha binding sites were unchanged in permeabilized macrophages, indicating that TNF-R were rapidly internalized. Conditioned media from LPS-treated RAW 264.7 cells induced 30% down-regulation of TNF-R on macrophages from LPS-hyporesponsive mice (C3H/HeJ), suggesting that a soluble macrophage product may be responsible for a minor portion of the LPS effect. Additional evidence against endogenous TNF alpha being the major cause of TNF-R internalization was the rapid onset of the effect of LPS on TNF-R compared to the reported onset of TNF alpha production, the relatively high concentrations of exogenous rTNF alpha required to mimic the effect of LPS, and the inability of TNF alpha-neutralizing antibody to block the effect of LPS. LPS-induced down-regulation of TNF-R was complete or nearly complete not only in RAW 264.7 cells, but also in primary macrophages of both human and murine origin, was less marked in human endothelial cells, and was absent in human granulocytes and melanoma cells and mouse L929 cells. Thus, in situ, macrophages and some other host cells may be resistant to the actions of TNF alpha produced during endotoxinemia, because such cells may internalize their TNF-R in response to LPS before TNF alpha is produced.  相似文献   

18.
In human monocytic cell lines, tumor necrosis factor alpha (TNF alpha) expression is induced by phorbol myristate acetate (PMA). We have identified positive and negative cis-acting elements in the TNF alpha promoter by deletion analysis. Here we present the initial characterization of the repressor element. The repressor element was shown to function in either orientation and at various distances upstream from the positive element of the TNF alpha promoter. The TNF alpha repressor site (TRS) has been localized to a 25 bp region between base pairs -254 and -230 in the promoter. This region contains a 10 bp sequence with homology to the binding site of the activator protein AP-2. Mutation of the 6 C's of this 10 bp AP-2-like site abolish TRS repressor function. However, this AP-2-like site is not a binding site for AP-2 protein based on gel retardation analysis. In addition, a well-characterized AP-2-binding site placed upstream of the positive element of the TNF alpha gene did not cause repression. Therefore, this repression is very likely mediated by a novel protein(s) which interacts with the AP-2 consensus site in the TRS.  相似文献   

19.
Tumor necrosis factor alpha (TNF alpha) and parathyroid hormone-related protein (PTHrP) are both factors that have been implicated in the mechanism of hypercalcemia of malignancy. In this study we investigated the effect of TNF alpha on the PTHrP-stimulated accumulation of intracellular cyclic AMP in osteoblast-like cells. In the clonal cell line Saos-2 and in primary cell cultures from fetal rat calvaria, PTHrP-stimulated accumulation of cAMP was time- and dose-dependently inhibited by exposure to TNF alpha. Significant inhibition occurred at concentrations as low as 2 x 10(-12) M and was maximal at 1 x 10(-9) M. Inhibition was observed after 6 h and was maximal after 18 h. Inhibition by TNF alpha was probably mediated by protein kinase C, since the phorbol ester PMA mimicked the effect of TNF alpha, and the protein kinase C inhibitor H-7 completely abolished the effect of TNF alpha. In conclusion, these observations suggest a possible mechanism by which TNF alpha may modulate the effect of PTHrP on osteoblast function in the syndrome of humoral hypercalcemia of malignancy.  相似文献   

20.
The effects of interleukin (IL)-1 alpha, IL-1 beta and TNF alpha on prostaglandin-E2 synthesis in Madin-Darby canine kidney (MDCK) cells were investigated. IL-1 beta time- and dose-dependently stimulated prostaglandin-E2 synthesis. While TNF alpha produced a comparatively small but significant stimulation of PGE2 release, coincubation of IL-1 beta with TNF alpha produced a marked synergistic stimulation of PGE2 release. The effect of IL-1 beta and of IL-1 beta and TNF alpha was apparent as early as after 2 h of incubation. The enhanced PGE2 synthesis was inhibited by indomethacin as well as actinomycin D, while cycloheximide surprisingly potentiated PGE2 synthesis in response to both IL-1 beta and TNF alpha. IL-1 alpha alone was ineffective in stimulating a significant release of PGE2 at concentrations as high as 10 nM. However, it also showed a marked synergistic interaction with TNF alpha in stimulating PGE2 release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号