首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The mechanisms by which glucose regulates calcium fluxes in pancreatic endocrine cells were investigated by monitoring the efflux of45Ca from prelabeled and perifused rat pancreatic islets. In the absence of both extracellular calcium and glucose, partial or total removal of extracellular sodium decreases the efflux of45Ca from prelabeled islets. Glucose also reduces the efflux of45Ca from islets perifused in the absence of extracellular calcium. This inhibitory effect of glucose on45Ca efflux is decreased by half when the extracellular concentration of sodium is lowered to 24mm. In the absence of extracellular calcium but presence of glucose, partial or even total removal of extracellular sodium fails to decrease the efflux of45Ca. At normal extracellular calcium concentration (1mm) partial removal of extracellular sodium dramatically increases45Ca efflux from pancreatic islets. This increase in45Ca efflux is partially but not totally suppressed by either 16.7mm glucose or cobalt. It is totally suppressed by 4.4mm glucose or by the combination of 16.7mm glucose and cobalt. At normal extracellular calcium concentration, glucose initially reduces and subsequently increases45Ca efflux. The initial fall is unaffected by tetrodotoxin but decreased by 50% at low extracellular sodium concentration (24mm). The present results suggest the existence in pancreatic endocrine cells of a glucose-sensitive process of sodium-calcium counter-transport. By inhibiting such a process, glucose may decrease the efflux of calcium from islet cells. The effect of glucose is not mediated by an increase in intracellular sodium concentration. It could contribute to the intracellular accumulation of calcium which is thought to trigger insulin release.This paper is the IVth in a series.  相似文献   

2.
Summary Accumulation of neutral amino acids by isolated chick epithelial cells has been studied and the results discussed in terms of the ion gradient model, and a model invoking a direct input of metabolic energy. The cells establish four- to eightfold concentration gradients of amino acids at an extracellular concentration of 1mm. The accumulation is sodium-dependent, inhibited by high extracellular potassium concentrations, and is sensitive to a variety of metabolic inhibitors. Also, amino acid uptake is depressed by actively transported sugars, and certain other amino acids, and is stimulated by phloridzin.Cells equilibrated with valine and loaded with 30 to 40mm intracellular sodium begin immediately to actively accumulate valine when suddenly introduced to media containing 20mm sodium. The cells establish a threefold gradient of amino acid during the interval when intracellular sodium is higher than extracellular sodium.Amino acid accumulation and22Na efflux were monitored simultaneously in cells treated with phloridzin. While phloridzin causes a 30% stimulation of amino acid uptake, no variation in the rate of22Na efflux or the steady-state level of22Na maintained by the cells can be detected. Similarly, either 2.5mm glucose or 2.5mm 3-O-methylglucose cause approximately a 50% inhibition of 1mm valine uptake, but no detectable change in steady-state cellular22Na content. Several aspects of the data seem inconsistent with concepts embodied in the ion gradient hypothesis, and it is suggested that a directly energized transport mechanism can better accommodate all of the data.  相似文献   

3.
Summary In human red cells homozygous for hemoglobin C (CC), cell swelling and acid pH increase K efflux and net K loss in the presence of ouabain (0.1mm) and bumetanide. We report herein, that K influx is also dependent on cell volume in CC cells: cell swelling induces a marked increase in the maximal rate (from 6 to 18 mmol/liter cell × hr) and in the affinity for external K (from 77±16mm to 28±3mm) of K influx. When the external K concentration is varied from 0 to 140mm, K efflux from CC and normal control cells is unaffected. Thus, K/K exchange is not a major component of this K movement. K transport through the pathway of CC cells is dependent on the presence of chloride or bromide; substitution with nitrate, acetate or thiocyanate inhibits the volume- and pH-dependent K efflux. When CC cells are separated according to density, a sizable volume-dependent component of K efflux can be identified in all the fractions and is the most active in the least dense fraction. N-ethylmaleimide (NEM) markedly stimulates K efflux from CC cells in chloride but not in nitrate media, and this effect is present in all the fractions of CC cells separated according to density. The persistence of this transport system in denser CC cells suggests that not only cell age, but also the presence of the positively charged C hemoglobin is an important determinant of the activity of this system. These data also indicate that the K transport pathway of CC cells is not an electrodiffusional process and is coupled to chloride.  相似文献   

4.
The reactions of three organic mercurial compounds, chlormerodrin, parachloromercuribenzoate (PCMB), and parachloromercuribenzenesulfonate (PCMBS) with intact red blood cells, hemolyzed red cells, hemoglobin solutions, and hemoglobin-free ghosts have been characterized. Both PCMB and PCMBS react with only 2 to 3 sulfhydryl groups per mole of hemoglobin in solution, whereas chlormerodrin reacts with 6 to 7. In hemoglobin-free ghosts, however, all three reagents react with a similar number of sulfhydryl groups, approximately 4 x 10-17 moles per cell, or about 25 per cent of the total stromal sulfhydryl groups, which react with inorganic mercuric chloride. In the intact cell the membrane imposes a diffusion barrier; chlormerodrin and PCMB penetrate slowly, whereas PCMBS does not. Kinetic studies of chlormerodrin binding to intact cells reveal that the majority of stromal sulfhydryl groups is located inside the diffusion barrier, with only 1 to 1.5 per cent (or 1 to 1,400,000 sites per cell) located outside of this barrier. Reaction of PCMBS with intact cells is limited to this small fraction on the outer membrane surface. All three reagents are capable of inhibiting glucose transport in the red cell. With chlormerodrin and PCMBS it was demonstrated that the inhibition results from interactions with the sulfhydryl groups located on the outer surface of the membrane.  相似文献   

5.
Summary The addition of glucose to a suspension of Ehrlich ascites tumor cells results in rapid acidification of the extracellular medium due to lactic acid production. The nature of the H+ efflux mechanism has been studied by measuring the time course of the acidification, the rate of proton efflux, the direction and relative magnitude of the H+ concentration gradient, and the voltage across the membrane. Using the pH-sensitive dye acridine orange, we have established that after addition of 10mm glucose an outward-directed H+ concentration gradient develops. As the rate of glycolysis slows, the continued extrusion of H+ reverses the direction of the H+ concentration gradient. Changes in absorbance of the voltagesensitive dye diethyloxadicarbocyanine iodide (DOCC), and changes in the distribution of the lipid permeant cation tetraphenyl phosphonium, showed a dramatic and persistent hyperpolarization of the membrane voltage after glucose addition. The hyperpolarization was prevented by the protonophore tetrachlorosalicylanalide (TCS) and by valinomycin, but not by the neutral-exchange ionophore nigericin. Inhibitors of lactate efflux were found to reduce the rate of acidification after glucose addition but they had no effect on the magnitude of the resulting hyperpolarization. On the basis of these and other data we suggest that an active electrogenic pump mechanism for H+ efflux may be activated by glucose and that this mechanism operates independently of the lactate carrier system.  相似文献   

6.
A series of amphiphilic polymethylenecarboxymaleimides has been synthesized for use as sulfhydryl reagents applicable to membrane proteins. Physical properties of the compounds which are relevant to their proposed mode of action have been determined. By comparing rates of reaction in aqueous and aprotic solvents, the compounds have been shown to react exclusively with the thiolate ion. The effects of the reagents on three membrane-associated proteins are reported, and in two cases a comparative study has been made of the effects on the proteins in the absence of membranes. A mechanism is proposed whereby the reagents are anchored at the lipid/water interface by the negatively charged carboxyl group, thus siting the reactive maleimide in a plane whose depth is defined by the length of the reagent. Supporting evidence for this model is provided by the inability of the reagents to traverse membranes, and variation of their inhibitory potency with chain length when the proteins are embedded in the membrane, but not when extracted into solution. As examples of general use of the reagents to probe sulfhydryl groups in membrane proteins, the reagents have been used to (a) determine the depths in the membrane at which two populations of sulfhydryl groups occur in the mitochondrial phosphate transporter; (b) locate a single sulfhydryl associated with the active site ofD--hydroxybutyrate dehydrogenase in the inner mitochondrial membrane; (c) examine sulfhydryl groups in theD-3-glyceraldehyde phosphate dehydrogenase associated with the human red blood cell membrane.  相似文献   

7.
Summary It has been suggested that during the oxytocin-induced hydrosmotic response, water crosses the luminal membrane of urinary bladder epithelium cells through membranespanning proteins. Although specific inhibitors of osmotic water transport have not been found, certain sulfhydryl reagents such as mercurial compounds may help to identify the proteins involved in this permeation process. We tested the effects ofp-chloromercuribenzene sulfonate (PCMBS) and of fluoresceinmercuric acetate (FMA) on the net water flux, the microtubule and microfilament structures of the frog urinary bladder, and the distribution of intramembrane particle aggregates in the luminal membrane.We observed that: (i) 5mm PCMBS at pH 5 and 0.5mm FMA at pH 8 added to the mucosal bath at the maximum of the response to oxytocin partially inhibited the net water flux. Inhibition then increased progressively when the preparation was repeatedly or continuously stimulated, until it reached a maximal inhibition at 120 min. This inhibition was not reversed even when cystein was added in the mucosal bath. PCMBS and FMA effects were also observed when cyclic AMP (3,5 cyclic adenosine monophosphate) was used to increase water permeability. (ii) PCMBS mucosal pretreatment did not modify the basal water flux but potentiated the inhibitory effect of PCMBS or FMA on the hydrosmotic response to oxytocin. (iii) Microtubule and microfilament network, visualized in target cells by immunofluorescence, was not affected by PCMBS. (iv) The maximal PCMBS or FMA inhibition was not associated with a reduction of aggregate surface area in the apical membrane.The persistence of the intramembrane particle aggregates associated with the oxytocin-induced hydrosmotic response during the net water flux inhibition by PCMBS, suggests that the PCMBS effect occurs possibly at the level of sulfhydryl groups of the water channel itself.  相似文献   

8.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

9.
Summary The effects of cAMP, ATP and GTP on the Ca2+-dependent K+ channel of fresh (1–2 days) or cold-stored (28–36 days) human red cells were studied using atomic absorption flame photometry of Ca2+-EGTA loaded ghosts which had been resealed to monovalent cations in dextran solutions. When high-K+ ghosts were incubated in an isotonic Na+ medium, the rate constant of Ca2+-dependent K+ efflux was reduced by a half on increasing the theophylline concentration to 40mm. This effect was observed in ghosts from both fresh and stored cells, but only if they were previously loaded with ATP. The inhibition was more marked when Mg2+ was added together with ATP, and it was abolished by raising free Ca2+ to the micromolar level. Like theophylline, isobutyl methylxanthine (10mm) also affected K+ efflux. cAMP (0.2–0.5mm), added both internally and externally (as free salt, dibutyryl or bromide derivatives), had no significant effect on K+ loss when the ghost free-Ca2+ level was below 1 m, but it was slightly inhibitory at higher concentrations. The combined presence of cAMP (0.2mm) plus either theophylline (10mm), or isobutyl methylxanthine (0.5mm), was more effective than cAMP alone. This inhibition showed a strict requirement for ATP plus Mg2+ and it, was not overcome by raising internal Ca2+. Ghosts from stored cells seemed more sensitive than those from fresh cells, to the combined action of cAMP and methylxanthines. Loading ATP into ghosts from fresh or stored cells markedly decreased K+ loss. Although this effect was observed in the absence of added Mg2+ (0.5mm EDTA present), it was potentiated upon adding 2mm Mg2+. The K+ efflux from ATP-loaded ghosts was not altered by dithio-bis-nitrobenzoic acid (10mm) or acridine orange (100 m), while it was increased two-to fourfold by incubating with MgF2 (10mm), or MgF2 (10mm)+theophylline (40mm), respectively. By contrast, a marked efflux reduction was obtained by incorporating 0.5mm GTP into ATP-containing ghosts. The degree of phosphorylation obtained by incubating membranes with (-32P)ATP under various conditions affecting K+ channel activity, was in direct correspondence to their effect on K+ efflux. The results suggest that the K+ channel of red cells is under complex metabolic control, via cAMP-mediated and nonmediated mechanisms, some which require ATP and presumably, involve phosphorylation of the channel proteins.  相似文献   

10.
Summary The initial mechanisms of injury to the proximal tubule following exposure to nephrotoxic heavy metals are not well established. We studied the immediate effects of silver (Ag+) on K+ transport and respiration with extracellular K+ and O2 electrodes in suspensions of renal cortical tubules. Addition of silver nitrate (AgNO3) to tubules suspended in bicarbonate Ringer's solution caused a rapid, dose-dependent net K+ efflux (K m =10–4 m,V max=379 nmol K+/min/mg protein) which was not inhibited by furosemide, barium chloride, quinine, tetraethylammonium, or tolbutamide. An increase in the ouabain-sensitive oxygen consumption rate (QO2) (13.9±1.1 to 25.7±4.4 nmol O2/min/mg,P<0.001), was observed 19 sec after the K+ efflux induced by AgNO3 (10–4 m), suggesting a delayed increase in Na+ entry into the cell. Ouabain-insensitive QO2, nystatin-stimulated QO2, and CCCP-uncoupled QO2 were not significantly affected, indicating preserved function of the Na+, K+-ATPase and mitochondria. External addition of the thiol reagents dithiothreitol (1mm) and reduced glutathione (1mm) prevented and/or immediately reversed the effects on K+ transport and QO2. We conclude that Ag+ causes early changes in the permeability of the cell membrane to K+ and then to Na+ at concentrations that do not limit Na+, K+-ATPase activity or mitochondrial function. These alterations are likely the result of a reversible interaction of Ag+ with sulfhydryl groups of cell membrane proteins and may represent initial cytotoxic effects common to other sulfhydryl-reactive heavy metals on the proximal tubule.  相似文献   

11.
Role of the bilayer in the shape of the isolated erythrocyte membrane   总被引:1,自引:0,他引:1  
Summary The determinants of cell shape were explored in a study of the crenation (spiculation) of the isolated erythrocyte membrane. Standard ghosts prepared in 5mm NaPi (pH 8) were plump, dimpled disks even when prepared from echinocytic (spiculated) red cells. These ghosts became crenated in the presence of isotonic saline, millimolar levels of divalent cations, 1mm 2,4-dinitrophenol or 0.1mm lysolecithin. Crenation was suppressed in ghosts generated under conditions of minimal osmotic stress, in ghosts from red cells partially depleted of cholesterol, and, paradoxically, in ghosts from red cells crenated by lysolecithin. The susceptibility of ghosts to crenation was lost with time; this process was potentiated by elevated temperature, low ionic strength, and traces of detergents or chlorpromazine.In that ghost shape was influenced by a variety of amphipaths, our results favor the premise that the bilayer and not the subjacent protein reticulum drives ghost crenation. The data also suggest that vigorous osmotic hemolysis induces a redistribution of lipids between the two leaflets of the bilayer which affects membrane contour through a bilayer couple mechanism. Subsequent relaxation of that metastable distribution could account for the observed loss of crenatability.  相似文献   

12.
Summary The cellular mechanisms by which nephrotoxic heavy metals injure the proximal tubule are incompletely defined. We used extracellular electrodes to measure the early effects of heavy metals and other sulfhydryl reagents on net K+ and Ca2+ transport and respiration (QO2) of proximal tubule suspensions. Hg2+, Cu2+, and Au3+ (10–4 m) each caused a rapid net K+ efflux and a delayed inhibition of QO2. The Hg2+-induced net K+ release represented passive K+ transport and was not inhibited by barium, tetraethylammonium, or furosemide. Both Hg2+ and Ag+ promoted a net Ca2+ uptake that was nearly coincident with the onset of the net K+ efflux. A delayed inhibition of ouabainsensitive QO2 and nystatin-stimulated QO2, indicative of Na+, K+-ATPase inhibition, was observed after 30 sec of exposure to Hg2+. More prolonged treatment (2 min) of the tubules with Hg2+ resulted in a 40% reduction in the CCCP-uncoupled QO2, indicating delayed injury to the mitochondria. The net K+ efflux was mimicked by the sulfhydryl reagents pCMBS and N-ethylmaleimide (10–4 m) and prevented by dithiothreitol (DTT) or reduced glutathione (GSH) (10–4 m). In addition, both DTT and GSH immediately reversed the Ag+-induced net Ca2+ uptake. Thus, sulfhydryl-reactive heavy metals cause rapid, dramatic changes in the membrane ionic permeability of the proximal tubule before disrupting Na+, K+-ATPase activity or mitochondrial function. These alterations appear to be the result of an interaction of the metal ions with sulfhydryl groups of cell membrane proteins responsible for the modulation of cation permeability.  相似文献   

13.
Effects of ionizing radiation and of sulfhydryl reagents on the 45Ca binding of red cell membranes were studied. Corresponding effects of these agents on potassium leak from intact red cells were also determined. Essentially all the 45Ca associated with the ghosts appeared to be bound. Calcium binding could be described by assuming two independent groups of binding sites with dissociation constants of about 6 × 10?4 m and 2 × 10?4 m. The total binding capacity was about 2.5 × 10?4 moles/g ghost protein. Membrane calcium was decreased by radiation and by the two sulfhydryl reagents, p-chloromercuribenzoate (PCMB) and N-ethyl maleimide (NEM). The tightly bound calcium fraction appeared to be most affected by these agents. Changes in potassium leak evoked by varying doses of agents appeared to parallel effects on membrane calcium. These investigations suggest that the increased cation permeability observed after exposure or red cells to radiation or sulfhydryl reagents may be related to alterations in the calcium-binding properties of the cell membrane.  相似文献   

14.
Summary Unidirectional fluxes of 204Tl+ through the human red blood cell membrane were measured. The inward rate coefficient measured in a K+-free saline was 15.6±0.6 hr–1. The influx of Tl+ could be partially inhibited with 0.1mm ouabain (by 28%), 0.1mm DIDS (by 50%) or 1mm furosemide (by 51%). The inhibitory effects of ouabain and DIDS or furosemide were additive. Half-maximal responses were seen at 0.72 m and 0.22mm concentrations of DIDS and furosemide, respectively. A similar action of these blockers on Tl+ influx was observed in the erythrocytes incubated in MgCl2-sucrose media. The outward rate coefficient of 204Tl was also inhibited by DIDS and furosemide (by 65 and 52%, respectively). Rate coefficients of 204Tl influx and efflux decreased significantly in the red cells exposed to Cl-free media (NaNO3 or Mg(NO3)2-sucrose). Under these conditions addition of DIDS and furosemide led to only a small inhibition of Tl+ fluxes. There was a linear increase in Tl+ influx with rising of external Cl concentration within 80–155mm or HCO 3 concentration from 20 to 40mm when the sum of anions was kept constant (155mm) with NO 3 . The HCO 3 -stimulated Tl+ influx was completely blocked by 0.05mm DIDS but only 67% by 1mm furosemide. The present study provides direct evidence for the occurrence of Cl (HCO 3 )-dependent, DIDS-sensitive movement of Tl+ across the human erythrocyte membrane in both directions. Under physiological conditions, about half of net Tl+ fluxes occurs due to an anion exchange mechanism. Our data fail to detect a contribution of the Na-K-Cl cotransport system to Tl+ transport in human erythrocytes.  相似文献   

15.
Summary Previously we have shown that the inhibition of active transport by amiloride is noncompetitive with sodium inRana catesbeiana skin, suggesting that amiloride acts at a site separate from the sodium entry site (Benos, D.J., Mandel, L.J., Balaban, R.S. 1979,J. Gen Physiol. 73: 307). In the present study, the effects of a number of sulfhydryl, amino, and carboxyl group selective reagents were studied on short-circuit current (I sc) as well as the efficacy of amiloride in bullfrog skin, to determine those functional ligands which may be involved with either of these processes.Addition of the sulfhydryl reagent PCMBS (1mm) to the outside bathing medium produced biphasic effects, initially reversibly increasingI sc by an average 56% followed by a slower, irreversible decay to levels below baseline. In contrast, the addition of 0.1mm PCMB always resulted in a rapid, irreversible decrease inI sc. When a 40,000 mol wt dextran molecule was attached to PCMB, a stable, reversible increase inI sc was observed. These observations suggest that at least two populations of-SH groups are involved in Na translocation through the entry step. Amiloride was equally effective in inhibitingI sc before and after treatment with PCMBS both during the stimulatory as well as the inhibitory phase. The sulfhydryl reducing agent DTT, and oxidizing agent DTNB had only minor influence onI sc and did not alter the effectiveness of amiloride.Similarly, the amino reagents, SITS and TNBS did not affectI sc. However, TNBS decreased the ability of amiloride to inhibit Na entry. These results suggest that an amino group may be involved in the interaction of amiloride and its site, without affecting Na entry.The carboxyl reagents EEDQ, TMO, and three separate carbodiimides were without effect onI sc or amiloride inhibition. Methylene blue (MB), a molecule that interacts with both carboxyl and hydroxylspecific groups, inhibitedI sc by 20% and decreased amiloride's ability to inhibitI sc. These effects, however, are likely to occur from the cytoplasmic side as MB appears to enter into the cells.These results support the notion that amiloride and Na interact with the entry protein at different regions on the membrane.  相似文献   

16.
The sulfate transport in AH-66 hepatoma ascites cells was examined under various controlled conditions using 35SO42- as a tracer. The sulfate efflux rate was dependent on temperature, pH and anion species of the cell suspending medium. The efflux rate became saturated as the concentration of extracellular anions was increased. The efflux of anion was inhibited by some chemical reagents specifically reactive with amino or sulfhydryl groups. The results obtained in this study suggest that sulfate anions were transported by a facilitated transport system(s), and that some membrane protein(s) is involved in the anion transport system(s) of AH-66 cells. Both amino and sulfhydryl groups are thought to play a determinant role at the sulfate transport site in AH-66 cells.  相似文献   

17.
Summary We have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca–K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca–K efflux activated by metabolic depletion was partially (77%) inhibited from 15.8±2.4 mmol/liter cell · hr, to 3.7±1.0 mmol/liter cell · hr by 6nm CTX (n=3). The kinetic of Ca–K efflux was studied by increasing cell ionized Ca2+ using A23187 (60 mol/liter cell), and buffering with EGTA or citrate; initial rates of net K+ efflux (90 mmol/liter cell K+) into Na+ medium containing glucose, ouabain, bumetanide at pH 7.4 were measured. Ca–K efflux increased in a sigmoidal fashion (n of Hill 1.8) when Ca2+ was raised, with aK m of 0.37 m and saturating between 2 and 10 m Ca2+. Ca–K efflux was partially blocked (71±7.8%, mean ±sd,n=17) by CTX with high affinity (IC500.8nm), a finding suggesting that is a high affinity ligand of Ca–K channels. CTX also blocked 72% of the Ca-activated K+ efflux into 75mm K+ medium, which counteracted membrane hyperpolarization, cell acidification and cell shrinkage produced by opening of the K+ channel in Na+ media. CTX did not block Valinomycin-activated K+ efflux into Na+ or K+ medium and therefore it does not inhibit K+ movement coupled to anion conductive permeability.TheV max, but not theK m–Ca of Ca–K efflux showed large individual differences varying between 4.8 and 15.8 mmol/liter cell · min (FU). In red cells with Hb A,V max was 9.36±3.0 FU (mean ±sd,n=17). TheV max of the CTX-sensitive, Ca–K efflux was 6.27±2.5 FU (range 3.4 to 16.4 FU) in Hb A red cells and it was not significantly different in Hb S (6.75±3.2 FU,n=8). Since there is larger fraction of reticulocytes in Hb S red cells, this finding indicates that cell age might not be an important determinant of theV max of Ca–K+ efflux.Estimation of the number of CTX-sensitive Ca-activated K+ channels per cell indicate that there are 1 to 3 channels/per cell either in Hb A or Hb S red cells. The CTX-insensitive K+ efflux (2.7±0.9 FU) may reflect the activity of a different channel, nonspecific changes in permeability or coupling to an anion conductive pathway.  相似文献   

18.
Summary Potassium fluxes in a suspension of rabbit proximal tubules were monitored using a potassium-sensitive extracellular electrode. Ouabain (10–4 m) and barium (5mm) were used to selectively quantitate the potassium efflux pathway (105±5 nmol K+·mg protein–1·min–1) and the sodium pump-related potassium influx (108±7), respectively. These equal and opposite fluxes suggest that potassium accumulation in the cell occurs mainly through the sodium pump and that potassium efflux occurs mainly through barium-sensitive potassium channels. Thus the activity of the sodium pump (Na, K-ATPase) in the basolateral membrane of the proximal tubule is balanced by the efflux of potassium, presumably across the basolateral membrane, which has a high potassium permeability. In addition, the effect of valinomycin and other ionophores was examined on potassium fluxes and several metabolic parameters [oxygen consumption (QO2), ATP content]. The addition of valinomycin to the tubules produced a net efflux of potassium which was quantitatively equivalent to the efflux produced by the addition of ouabain. The valinomycin-induced efflux was mainly due to the activity of valinomycin as a mitochondrial uncoupler, which indirectly inhibited the sodium pump by allowing a rapid reduction of the intracellular ATP. Amphotericin, nystatin, and monensin all produced large net releases of intracellular potassium. The action of the ionophores could be localized to the plasma or mitochondrial membrane and classified into three groups, as follows: (a) those which demonstrated full mitochondrial uncoupler activity (FCCP, valinomycin), (b) those which had no uncoupler activity (amphotericin B, nystatin); and (c) those which displayed partial uncoupler activity (monensin, nigericin).  相似文献   

19.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

20.
Summary Inhibition ofin vitro hepatic cell electrical membrane potentials (RP) by metabolic inhibitors constitutes further evidence that this is an electrophysiologically viable preparation. RP was rapidly and reversibly inhibited by 1mm cyanide (CN) and 1mm 2,4-dinitrophenol (DNP). A gradual, irreversible decline of RP occurred following addition of 10mm iodoacetamide (IA). Digitoxin (1mm), but not ouabain, markedly inhibited hepatic cell RP, with immediate recovery of RP upon removal of this agent. Insulin andl-thyroxine had no effect on hepatic cell RP. The only significant effect of epinephrine was slight depolarization at a concentration of 0.01mm/liter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号