首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We investigate how body size of two coexisting Daphnia species varies among 7 lakes that represent a gradient of predation risk. The two species segregate vertically in stratified lakes; D. galeata mendotae is typically smaller and more eplimnetic than D. pulicaria. The extent of vertical habitat partitioning, however, varies seasonally within and among lakes in apparent response to predation intensity by epilimnetic planktivorous fishes. Daphnia pulicaria uses the epilimnion at low levels of fish predation but is restricted to the hypolimnion under high fish predation, whereas D. galaeta mendotae always utilizes the epilimnion. The species display contrasting patterns of genetic variation in neonate size and size at maturity. D. pulicaria is larger in lakes with higher fish and Chaoborus densities whereas D. galeata mendotae is smaller. This contrast in body size in lakes with high predation is associated with greater habitat segregation in those lakes. In lakes with low predation risk, the two species are similar in body size at birth and maturity.Authorship order alphabetical  相似文献   

2.
Life-history variation in a hybrid species complex ofDaphnia   总被引:3,自引:0,他引:3  
L. J. Weider  H. G. Wolf 《Oecologia》1991,87(4):506-513
Summary Life-history variation was examined among members of theDaphnia longispina group, which consists ofD. galeata, D. hyalina, D. cucullata, and hybrids. Factorial experiments were conducted at two temperatures (14° and 20° C) and two food concentrations (0.2 and 1.0 mg Cl−1). Differences in life-history features (size at maturity, age at first reproduction, size of first clutch, offspring size in first clutch) under the different environmental conditions were assessed among eightDaphnia clones, which represented members of this species complex. Significant differences between parentals and hybrids for most life-history features were observed under various treatments; generally, hybrid clones showed intermediate life-history traits when compared with parentals. When comparisons were made among clones within a given species (i.e.D. galeata, D. galeata xcucullata, D. cucullata), clonal differences were also noted for certain life-history traits. The data are discussed with reference to the formation and maintenance of hybrid species complexes in nature. This paper is dedicated to the memory of Hans Georg Wolf, who died suddenly in May 1990 at the age of 39 years.  相似文献   

3.
Despite many ecological and evolutionary studies, the history of several species complexes within the freshwater crustacean genus Daphnia (Branchiopoda, Anomopoda) is poorly understood. In particular, the Daphnia longispina group, comprising several large-lake species, is characterized by pronounced phenotypic plasticity, many hybridizing species and backcrossing. We studied clonal assemblages from lakes and ponds comprising daphnids from several species complexes. In order to reveal patterns of reticulate evolution and introgression among species, we analysed three data sets and compared nuclear, mtDNA and morphological divergence using animals from 158 newly established clonal cultures. By examining 15 nuclear and 11 mitochondrial (12S/16S rDNA) genetic characters (allozymes/restriction enzymes), and 48 morphological traits, we found high clonal diversity and discontinuities in genotypic and morphological space which allowed us to group clones by cytonuclear differentiation into seven units (outgroup D. pulex). In contrast to six groups emerging from nuclear divergence (related to three traditional species, D. cucullata, D. galeata, D. hyalina and three pairwise intermediate hybrids), a seventh group of clones was clearly resolved by morphological divergence: distinct mtDNA haplotypes within one nuclear defined cluster, ‘D. hyalina’, resembled traditional D. hyalina and D. rosea phenotypes, respectively. In other nuclear defined clusters, association between mtDNA haplotype and morphology was low, despite hybridization being bidirectional (reciprocal crosses). Morphological divergence was greatest between young sister species which are separated on the lake/pond level, suggesting a significant role for divergent selection during speciation along with habitat shifts. Phylogenetic analyses were restricted to four cytonuclear groups of clones related to species. mtDNA and nuclear phylogenies were consistent in low genetic divergence and monophyly of D. hyalina and D. rosea. Incongruent patterns of phylogenies and different levels of genetic differentiation between traditional species suggest reticulate evolutionary processes.  相似文献   

4.
Seasonal dynamics and interspecific competition in Oneida Lake Daphnia   总被引:4,自引:0,他引:4  
Carla E. Cáceres 《Oecologia》1998,115(1-2):233-244
I investigated the population dynamics and competitive interactions of two species of the suspension-feeding crustacean Daphnia in Oneida Lake, N.Y. Both species have persisted in the lake for decades, but their water-column densities are negatively correlated. The larger Daphnia pulicaria dominates in some years, the smaller D. galeata mendotae in others, and in some years one species replaces the other seasonally. Although this pattern results in part from annual variation in vertebrate predation pressure, predation alone cannot explain the irregular daphnid dynamics. In 1992–1995, I examined the water-column abundances, birth and death rates of both species. D. pulicaria dominated in two years, D. galeata mendotae was replaced by D. pulicaria in one year and in 1994, both species persisted in low numbers. To test the effect of temporal changes on the strength of intra- and interspecific competition on both juvenile and adult daphnids, I manipulated a series of field enclosures in 1994 and 1995. The outcome of competition varied within and between years, and its effects were most evident at the highest densities and lowest resource levels. For adults of both species, the effects of interspecific competition were detected more often than those of intraspecific competition. Lipid reserves (a metric of fitness) among juveniles were generally low, with those of D. galeata mendotae often being less than those of D. pulicaria. Contrary to the results of other studies examining competition in daphnids, spatial segregation and predictable within-year reversals in competitive dominance most likely do not play a large role in fostering coexistence of the Oneida Lake daphnids. Instead, coexistence of these competitors is promoted by interannual variation and long-lived diapausing eggs. Received: 20 July 1997 / Accepted: 21 November 1997  相似文献   

5.
1. Molecular approaches have increasingly revealed hidden genetic structure within ecologically important species, leading to the creation of sibling species whose ecological relevance is often unclear. A prime example is Daphnia galeata mendotae, which was split into D. dentifera and D. mendotae based on differences at two allozyme loci. 2. In a set of lake populations in Michigan USA, we test the geographical and temporal consistency of the genetic structure underlying this species split. We also test the morphological relevance of this molecular variation and its ecological significance in lakes. In essence, we ask: does recognition of these new species provide valuable information for plankton ecologists? 3. We found that D. dentifera and D. mendotae represent morphologically and ecologically distinct forms that are distributed among lakes in non‐random fashion, which were remarkably stable over 6 years. Key differences between the species concern their body and head shape, vertical habitat use within lakes and distribution among lakes of different size. We hypothesise that these differences represent specialisation to habitats that differ in risk of invertebrate predation. 4. Reproductive barriers alone are insufficient to explain the pattern of genetic structure; in some lakes complete introgression is apparent. However, parent species and hybrids exhibit a stable co‐existence in many lakes, which suggests that ecological specialisation reinforces divergence within this taxon.  相似文献   

6.
A two-step method is proposed to get reliable associations between morphology and genotype in clonal assemblages in which more than two predominantly parthenogenetic species are thought to coexist with hybrids. In dataset 1, the genetic relationships among clones of the Daphnia longispina hybrid complex from seven prealpine lakes in southern Germany were studied based on the variation at 21 enzyme loci. The spatial arrangement in the multidimensional scaling plot revealed a reticulate pattern among three presumably parental species, D. cucullata, D. galeata and D. hyalina, and three hybrid groups, D. cucullata/galeata, D. cucullata/hyalina and D. galeata/hyalina. The Got1 locus was believed to be a discriminating factor between species and hybrids (cf. Wolf and Mort, 1986). However, this locus is more variable, and 57% of the clones would have been misidentified using it. Moreover, the morphological variation within genetically defined groups is also higher than previously assumed. In dataset 2, the revision of morphological and genetic markers greatly improved the association between morphology and genotype in newly collected animals. The spatial arrangement of clones in multidimensional scaling plots and morphological asymmetries to parents suggest both, different degrees of introgression and bidirectional hybridization. Most unexpected genotypes were found in the cxh hybrid group, suggesting that F1-hybrids are fertile. The results showed (1) that the clonal diversity was very high (2) that detailed analyses of multiple morphological and allozyme markers are necessary to resolve taxonomic relationships within clonal assemblages consisting of multiple species, hybrids and differently introgressed backcrosses, and (3) that the three original species seem to have sufficient within-species recombination and a low enough rate of backcrossing to allow taxonomic identification. It must remain undecided if the present situation is locally restricted, if it is stable or represents a transient situation which could lead to either a consolidation of the three species by gradual elimination of the hybrids, to a taxonomic breakdown, or to hybrid speciation.  相似文献   

7.
M. A. Leibold 《Oecologia》1991,86(4):510-520
Summary Two commonly coexisting species of Daphnia segregate by habitat in many stratified lakes. Daphnia pulicaria is mostly found in the hypolimnion whereas D. galeata mendotae undergoes diel vertical migration between the hypolimnion and the epilimnion. I examined how habitat segregation between these two potentially competing species might be affected by trophic interactions with their resources and predators by performing a field experiment in deep enclosures in which I manipulated fish predation, nutrient levels, and the density of epilimnetic Daphnia. The results of the experiment indicate that habitat use by D. pulicaria can be jointly regulated by competition for food from epilimnetic Daphnia and predation by fishes. Patterns of habitat segregation between the two Daphnia species were determined by predation by fish but not by nutrient levels: The removal of epilimnetic fish predators resulted in higher zooplankton and lower epilimnetic phytoplankton densities and allowed D. pulicaria to expand its habitat distribution into the epilimnion. In contrast, increased resource productivity resulted in higher densities of both Daphnia species but did not affect phytoplankton levels or habitat use by Daphnia. The two species exhibit a trade-off in their ability to exploit resources and their susceptibility to predation by fish. D. g. mendotae (the less susceptible species) may thus restrict D. pulicaria (the better resource exploiter) from the epilimnion when fish are common due to lower minimum resource requirements than those needed by D. pulicaria to offset the higher mortality rate imposed by selective epilimnetic fish predators. D. g. mendotae does not appear to have this effect in the absence of fish.  相似文献   

8.
1. We measured the abundance and eggs per female of four Daphnia species in turbid and relatively clear regions of Lake Texoma (Oklahoma‐Texas, U.S.A.) on 12 dates over the course of 5 years. 2. Two species, Daphnia lumholtzi and Daphnia parvula, occurred and reproduced in turbid locations, but two other species, Daphnia mendotae and Daphnia pulicaria, occurred almost exclusively in relatively clear conditions. 3. To test the hypothesis that interference with foraging excludes clear‐water Daphnia species from turbid locations, we incubated adult D. mendotae at both a clear and a turbid site. In three successive experiments D. mendotae individuals incubated at the turbid site carried as many or more eggs than individuals incubated at the clear site.  相似文献   

9.
We conducted grazing experiments to test whether larger-bodiedDaphnia pulicaria have a different effect from smaller-bodiedDaphnia galeata mendotae on the composition of summer algalassemblages in eutrophic lakes. Three separate cubitainer experimentswere run for 5 days in a replicated factorial design utilizingtwo algal community types and the two Daphnia species. Inorganicphosphorus and nitrogen were added to prevent nutrient limitationof the algae. Both edible and inedible size fractions of chlorophylla increased in cubitainers without Daphnia spp. Grazer additionusually resulted in a reduction in edible chlorophyll; reductionswere greater in D.pulicaria cubitainers. Grazing by Daphniaspp. on presumed inedible chlorophyll was variable. Algal sizewas not always a good predictor of grazeability. The resultsof this study indicate that D.pulicaria, because of its greaterfiltration potential and ability to ingest larger particles,provides a stronger control on inedible-sized algae when comparedto equal numerical densities of D.g.mendotae. However, Aphanizomenonincreased as a response to heavy grazing pressure by D.pulicariaon other algal species. This suggests that biomanipulation effortsthat promote large-bodied Daphnia may not produce desirableresults if nutrient inputs remain high.  相似文献   

10.
Daphnia subfossils from lake sediments are useful for exploring the impacts of environmental stressors on aquatic ecosystems. Unfortunately, taxonomic resolution of Daphnia remains is coarse, as only a small portion of the animal is preserved, and so the identification of daphniid subfossils typically relies upon postabdominal claws. Daphniid claws can be assigned to one of two species complexes: D. longispina or D. pulex. Both complexes contain species with differing environmental optima, and therefore improved taxonomic resolution of subfossil daphniid claws would aid paleolimnological analyses. To identify morphological features that may be used to help differentiate between species within complexes, we used species presence/absence data from net tows to select lakes in central Ontario (Canada) containing only a single species from a particular complex, then used remains preserved in surface sediments of these lakes to isolate four Daphnia species: D. ambigua and D. mendotae from the D. longispina complex, and D. pulicaria and D. catawba from the D. pulex complex. Our analyses demonstrate that, within the D. longispina complex, postabdominal claw length (PCL) and spinule length can be used to distinguish D. mendotae from D. ambigua. In addition, within the D. pulex complex, there are differences between D. pulicaria and D. catawba in the relative lengths of the proximal and middle combs on the postabdominal claw. However, the number of stout spines on the middle comb is an unreliable character for differentiating species. Overall, our data demonstrate that greater resolution within Daphnia species complexes is possible using postabdominal claws; however, the process is arduous, and applicability will likely decrease with the number of taxa present.  相似文献   

11.
We calibrated four stages of hypodermal retraction and cuticle regeneration with five stages of parthenogenetic egg development in Daphnia. Using the hypodermal retraction stages, we found that epibiotic burden increased with elapsed intermolt time for juvenile, male, and female Daphnia bearing parthenogenetic or ephippial eggs. The rate of increase of burden was similar for adult females of two Daphnia species and for males and females of D. pulex. Rate of increase of burden was similar between juvenile and adult females of D. galeata mendotae and D. pulex.  相似文献   

12.
1. The indirect effects of predators on lower trophic levels have been studied without much attention to phenotypically plastic traits of key food web components. Phenotypic plasticity among species creates phenotypic diversity over a changing environmental landscape. 2. We measured the indirect effects of planktivorous larval walleye (Stizostedion vitreum) on phytoplankton biomass through their effects on the dominant herbivore species, Daphnia pulicaria and D. mendotae. 3. Fish had no effect on phytoplankton biomass or overall Daphnia density. We observed a compensatory response to predation by functionally comparable species within a trophic level in the form of shifting dominance and coexistence of Daphnia species. We hypothesized that this phenotypically plastic response to predation decoupled a potential trophic cascade in this freshwater pelagic system. Daphnia pulicaria density decreased over time with fish predation, but D. mendotae density increased over time with fish predation. 4. Phenotypically plastic life history trait shifts and reproductive rates differed between species in fishless and fish enclosures, accounting for population trends. Daphnia pulicaria were also proportionally higher in walleye larvae stomachs than in the enclosures, indicating that walleye preferred to feed on D. pulcaria over D. mendotae. The resultant shift in dominance may partially explain the overall benign effect of fish on grazers and supports the hypothesis that trophic level diversity can decouple a trophic cascade.  相似文献   

13.
Species boundaries in the North American Daphnia longispina group have proved difficult to establish on the basis of morphology alone. This confusion may be due to hydridization, phenotypic plasticity or the existence of sibling species. We therefore used genetic analysis to delineate species boundaries by examining 27 North American populations belonging to the longispina complex for variation at 15–26 allozyme loci. The populations consisted of Daphnia thorata from two western sites and two eastern sites, Daphnia galeata mendotae from its type location and seven sites across its range, and Daphnia rosea from eight temperate and seven arctic sites. Two populations from the Eurasian longispina complex were also included for reference. Populations assigned to D. galeata mendotae formed a genetically cohesive group, whereas a genetic dichotomy was found between temperate and arctic D. rosea , suggesting that this taxon includes two species. Genetic analysis also confirmed the distinctness of western D. thorata from other members of the longispina group. Unexpectedly, eastern populations resembling D. thorata were genetically more similar to temperate D. rosea than to any helmeted species ( D. galeata, Daphnia hyalina or D. thorata ). Our results suggest that the helmet character is a poor indicator of phylogenetic relationships, as the genetic ability to produce this feature has been lost or acquired several times in the evolution of the longispina group.  相似文献   

14.
Mona A. Mort 《Hydrobiologia》1989,171(2):159-170
Phenotypic change is studied in a cyclomorphicDaphnia galeata mendotae population known from previous studies to be clonally diverse. Morphological analyses revealed cyclical changes in both adult and juvenile helmet length and tailspine length which were: 1) strongly correlated with mean water temperature; and 2) repeated annually during the 3-year study period. Field populations exhibited high (5% to 30%) coefficients of variation (CV) for both helmet length and tailspine length; the CV also exhibited seasonal fluctuations such that it was lowest in late summer. The period of highestDaphnia helmet development coincides with peak densities of the common invertebrate predatorsChaoborus andLeptodora. The fluctuations in CV may be due to both differential phenotypic expression of the coexisting clones and invertebrate predation.  相似文献   

15.
We investigated the life history alterations of coexisting Daphnia species responding to environmental temperature and predator cues. In a laboratory experiment, we measured Daphnia life history plasticity under different predation risk and temperature treatments that simulate changing environmental conditions. Daphnia pulicaria abundance and size at first reproduction (SFR) declined, while ephippia (resting egg) formation increased at high temperatures. Daphnia mendotae abundance and clutch size increased with predation risk at high temperatures, but produced few ephippia. Thus, each species exhibited phenotypic plasticity, but responded in sharply different ways to the same environmental cues. In Glen Elder reservoir, Kansas USA, D. pulicaria dominance shifted to D. mendotae dominance as temperature and predation risk increased from March to June in both 1999 and 2000. Field estimates of life history shifts mirrored the laboratory experiment results, suggesting that similar phenotypic responses to seasonal cues contribute to seasonal Daphnia population trends. These results illustrate species-specific differences in life history plasticity among coexisting zooplankton taxa.  相似文献   

16.
Daphnia galeata Sars, D. longispina O. F. Müller and Dcucullata Sars (Crustacea: Cladocera) are closely related species which often produce interspecific hybrids in natural populations. Several marker systems are available for taxon determination in this hybridizing complex, but their performance and reliability has not been systematically assessed. We compared results from identifications by three molecular methods. More than 1,200 individuals from 10 localities in the Czech Republic were identified as parental species or hybrids by allozyme electrophoresis and the analysis of the restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP); over 440 of them were additionally analyzed and identified by 12 microsatellite loci. Identification by microsatellite markers corresponded well with allozyme analyses. However, consistent discrepancies between ITS-RFLP and other markers were observed in two out of 10 studied localities. Although some marker discrepancies may have been caused by occasional recent introgression, consistent deviations between ITS-RFLP and other markers suggest a long-term maintenance of introgressed alleles. These results warn against its use as a sole identification method in field studies. Additionally, we quantitatively evaluated the discriminatory power of geometric morphometric (elliptic Fourier) analysis of body shapes based on photos of over 1,300 individuals pre-classified by allozyme markers. Furthermore, a randomly selected subset of 240 individuals was independently determined from photos by several experts. Despite a tendency for morphological divergence among parental Daphnia species, some taxa (especially D. galeata, D. longispina, and their hybrids) substantially overlapped in their body shapes. This was reflected in different determination success for particular species and hybrids in discriminant analysis based on shape data as well as from photographs.  相似文献   

17.
The possibility of predator avoidance by Lake Michigan zooplankton   总被引:1,自引:1,他引:0  
Low densities of Diaptomus ashlandi, Diacyclops thomasi, and Daphnia galeata mendotae were measured at depths where Mysis relicta formed nighttime aggregations. Calculations suggest that mysid predation can not account for the rarity of prey animals at these depths, which further suggests that the prey avoided the mysids. Unlike D. galeata mendotae, Daphnia pulicaria was common in mysid aggregations. The somewhat larger size of D. pulicaria may reduce its vulnerability to mysid predation, and consequently may explain the vertical distribution differences between the two congeners. Vertical distributions of Limnocalanus macrurus and copepod nauplii showed no obvious relationships to the mysid distributions. These were the only two taxa with distributions that were correlated with chlorophyll a concentrations. All crustacean taxa were rare in the epilimnion at night when sonar recorded a dense fish school.  相似文献   

18.
We conducted field observations on 13 eutrophic Wisconsin lakesdominated by either the larger bodied Daphnia pulicaria or thesmaller bodied Daphnia galeata mendotae. While Daphnia numericaldensities were not significantly different between groups oflakes, pulicaria lakes had much higher Daphnia biomasses andfiltration potentials than galeata lakes. Although we foundsignificant differences in chlorophyll (Chl) a between bothgroups of lakes during June, on a seasonal basis populationsof different sized Daphnia were not associated with significantdifferences in Chl a. Filtration potential per se was the majordeterminant of Chl a, regardless of which Daphnia species dominated.However, in pulicaria lakes, the clear-water phase started earlier,lasted longer, and was usually characterized by greater Secchidisc readings than in galeata lakes. For large blue-green algaesuch as Aphanizomenon, D.pulicaria appeared to delay bloom conditions,but ultimately did not prevent the alga from growing. Our resultssuggest that high densities of large-sized Daphnia are a desirablegoal of biomanipulation because they can attain filtration potentialshigh enough to increase summer water clarity in eutrophic lakes.  相似文献   

19.
20.
This study examined the formation of morphological defences by two coexisting Daphnia species, the large-sized D. pulicaria (2 mm) and the small-sized D. mendotae (1.4 mm), in response to the presence of young-of-the-year (YOY) yellow perch (Perca flavescens) and invertebrate predators (Chaoborus, Leptodora) during summer in a mesotrophic lake. We hypothesized that due to differential size-selective predation risk by YOY fish and invertebrates, the large-sized and the small-sized Daphnia species would show different morphological responses to predation threats. We followed changes in two morphological traits (relative length of the tail spine in D. pulicaria and of the helmet in D. mendotae) among different periods during summer according to YOY fish and invertebrate predation. We defined four YOY fish predation periods based on the presence of YOY perch in the pelagic zone of the lake and the relative abundance of Daphnia preys in their gut contents, and two invertebrate predation periods based on exclusive or mutual occurrence of the invertebrate predators. The large-sized (D. pulicaria) and the small-sized (D. mendotae) species showed different morphological responses to YOY fish and invertebrate predators, respectively. The tail spine ratio of the juveniles and adults of D. pulicaria did not change in response to YOY fish predation or to invertebrate predation. A gradual increase in the helmet ratio was observed in the small-sized D. mendotae over the summer period. This change was related to the co-occurrence of the invertebrate predators (Chaoborus and Leptodora) and to YOY fish predation. The warmer temperature cannot be accounted for helmet elongation since it was constant across depths, and not related with the co-occurrence of D. mendotae and YOY perch. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号