首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 575 毫秒
1.
Process‐based models are effective tools to synthesize and/or extrapolate measured carbon (C) exchanges from individual sites to large scales. In this study, we used a C‐ and nitrogen (N)‐cycle coupled ecosystem model named CN‐CLASS (Carbon Nitrogen‐Canadian Land Surface Scheme) to study the role of primary climatic controls and site‐specific C stocks on the net ecosystem productivity (NEP) of seven intermediate‐aged to mature coniferous forest sites across an east–west continental transect in Canada. The model was parameterized using a common set of parameters, except for two used in empirical canopy conductance–assimilation, and leaf area–sapwood relationships, and then validated using observed eddy covariance flux data. Leaf Rubisco‐N dynamics that are associated with soil–plant N cycling, and depend on canopy temperature, enabled the model to simulate site‐specific gross ecosystem productivity (GEP) reasonably well for all seven sites. Overall GEP simulations had relatively smaller differences compared with observations vs. ecosystem respiration (RE), which was the sum of many plant and soil components with larger variability and/or uncertainty associated with them. Both observed and simulated data showed that, on an annual basis, boreal forest sites were either carbon‐neutral or a weak C sink, ranging from 30 to 180 g C m?2 yr?1; while temperate forests were either a medium or strong C sink, ranging from 150 to 500 g C m?2 yr?1, depending on forest age and climatic regime. Model sensitivity tests illustrated that air temperature, among climate variables, and aboveground biomass, among major C stocks, were dominant factors impacting annual NEP. Vegetation biomass effects on annual GEP, RE and NEP showed similar patterns of variability at four boreal and three temperate forests. Air temperature showed different impacts on GEP and RE, and the response varied considerably from site to site. Higher solar radiation enhanced GEP, while precipitation differences had a minor effect. Magnitude of forest litter content and soil organic matter (SOM) affected RE. SOM also affected GEP, but only at low levels of SOM, because of low N mineralization that limited soil nutrient (N) availability. The results of this study will help to evaluate the impact of future climatic changes and/or forest C stock variations on C uptake and loss in forest ecosystems growing in diverse environments.  相似文献   

2.
Understanding carbon dynamics of switchgrass ecosystems is crucial as switchgrass (Panicum virgatum L.) acreage is expanding for cellulosic biofuels. We used eddy covariance system and examined seasonal changes in net ecosystem CO2 exchange (NEE) and its components – gross ecosystem photosynthesis (GEP) and ecosystem respiration (ER) – in response to controlling factors during the second (2011) and third (2012) years of stand establishment in the southern Great Plains of the United States (Chickasha, OK). Larger vapor pressure deficit (VPD > 3 kPa) limited photosynthesis and caused asymmetrical diurnal NEE cycles (substantially higher NEE in the morning hours than in the afternoon at equal light levels). Consequently, rectangular hyperbolic light–response curve (NEE partitioning algorithm) consistently failed to provide good fits at high VPD. Modified rectangular hyperbolic light–VPD response model accounted for the limitation of VPD on photosynthesis and improved the model performance significantly. The maximum monthly average NEE reached up to ?33.02 ± 1.96 μmol CO2 m?2 s?1 and the highest daily integrated NEE was ?35.89 g CO2 m?2 during peak growth. Although large differences in cumulative seasonal GEP and ER were observed between two seasons, total seasonal ER accounted for about 75% of GEP regardless of the growing season lengths and differences in aboveground biomass production. It suggests that net ecosystem carbon uptake increases with increasing GEP. The ecosystem was a net sink of CO2 during 5–6 months and total seasonal uptakes were ?1128 ± 130 and ?1796 ± 217 g CO2 m?2 in 2011 and 2012, respectively. In conclusion, our findings suggest that the annual carbon status of a switchgrass ecosystem can be a small sink to small source in this region if carbon loss from biomass harvesting is considered. However, year‐round measurements over several years are required to assess a long‐term source‐sink status of the ecosystem.  相似文献   

3.
Net ecosystem productivity (NEP) was continuously measured using the eddy covariance (EC) technique from 2003 to 2005 at three forest sites of ChinaFLUX. The forests include Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical coniferous plantation (QYZ), and Dinghushan subtropical evergreen broad‐leaved forest (DHS). They span wide ranges of temperature and precipitation and are influenced by the eastern Asian monsoon climate to varying extent. In this study, we estimated ecosystem respiration (RE) and gross ecosystem productivity (GEP). Comparison of ecosystem carbon exchange among the three forests shows that RE was mainly determined by temperature, with the forest at CBS exhibiting the highest temperature sensitivity among the three ecosystems. The RE was highly dependent on GEP across the three forests, and the ratio of RE to GEP decreased along the North–South Transect of Eastern China (NSTEC) (i.e. from the CBS to the DHS), with an average of 0.77 ± 0.06. Daily GEP was mainly influenced by temperature at CBS, whereas photosynthetic photon flux density was the dominant factor affecting the daily GEP at both QYZ and DHS. Temperature mainly determined the pattern of the interannual variations of ecosystem carbon exchange at CBS. However, water availability primarily controlled the interannual variations of ecosystem carbon exchange at QYZ. At DHS, NEP attained the highest values at the beginning of the dry seasons (autumn) rather than the rainy seasons (summer), probably because insufficient radiation and frequent fog during the rainy seasons hindered canopy photosynthesis. All the three forest ecosystems acted as a carbon sink from 2003 to 2005. The annual average values of NEP at CBS, QYZ, and DHS were 259 ± 19, 354 ± 34, and 434 ± 66 g C m−2 yr−1, respectively. The slope of NEP that decreased with increasing latitude along the NSTEC was markedly different from that observed on the forest transect in the European continent. Long‐term flux measurements over more forest ecosystems along the NSTEC will further help verify such a difference between the European forest transect and the NSTEC and provide insights into the responses of ecosystem carbon exchange to climate change in China.  相似文献   

4.
This paper presents results of 1 year (from March 25, 2003 to March 24, 2004, 366 days) of continuous measurements of net ecosystem CO2 exchange (NEE) above a steppe in Mongolia using the eddy covariance technique. The steppe, typical of central Mongolia, is dominated by C3 plants adapted to the continental climate. The following two questions are addressed: (1) how do NEE and its components: gross ecosystem production (GEP) and total ecosystem respiration (Reco) vary seasonally? (2) how do NEE, GEP, and Reco respond to biotic and abiotic factors? The hourly minimal NEE and the hourly maximal Reco were −3.6 and 1.2 μmol m−2 s−1, respectively (negative values denoting net carbon uptake by the canopy from the atmosphere). Peak daily sums of NEE, GEP, and Reco were −2.3, 3.5, and 1.5 g C m−2 day−1, respectively. The annual sums of GEP, Reco, and NEE were 179, 138, and −41 g C m−2, respectively. The carbon removal by sheep was estimated to range between 10 and 82 g C m−2 yr−1 using four different approaches. Including these estimates in the overall carbon budget yielded net ecosystem productivity of −23 to +20 g C m−2 yr−1. Thus, within the remaining experimental uncertainty the carbon budget at this steppe site can be considered to be balanced. For the growing period (from April 23 to October 21, 2003), 26% and 53% of the variation in daily NEE and GEP, respectively, could be explained by the changes in leaf area index. Seasonality of GEP, Reco, and NEE was closely associated with precipitation, especially in the peak growing season when GEP and Reco were largest. Water stress was observed in late July to early August, which switched the steppe from a carbon sink to a carbon source. For the entire growing period, the light response curves of daytime NEE showed a rather low apparent quantum yield (α=−0.0047 μmol CO2 μmol−1 photons of photosynthetically active radiation). However, the α values varied with air temperature (Ta), vapor pressure deficit, and soil water content.  相似文献   

5.
Southwestern North America faces an imminent transition to a warmer, more arid climate, and it is critical to understand how these changes will affect the carbon balance of southwest ecosystems. In order to test our hypothesis that differential responses of production and respiration to temperature and moisture shape the carbon balance across a range of spatio‐temporal scales, we quantified net ecosystem exchange (NEE) of CO2 and carbon storage across the New Mexico Elevational Gradient, which consists of six eddy‐covariance sites representing biomes ranging from desert to subalpine conifer forest. Within sites, hotter and drier conditions were associated with an increasing advantage of respiration relative to production such that daily carbon uptake peaked at intermediate temperatures – with carbon release often occurring on the hottest days – and increased with soil moisture. Across sites, biotic adaptations modified but did not override the dominant effects of climate. Carbon uptake increased with decreasing temperature and increasing precipitation across the elevational gradient; NEE ranged from a source of ~30 g C m?2 yr?1 in the desert grassland to a sink of ~350 g C m?2 yr?1 in the subalpine conifer forest. Total aboveground carbon storage increased dramatically with elevation, ranging from 186 g C m?2 in the desert grassland to 26 600 g C m?2 in the subalpine conifer forest. These results make sense in the context of global patterns in NEE and biomass storage, and support that increasing temperature and decreasing moisture shift the carbon balance of ecosystems in favor of respiration, such that the potential for ecosystems to sequester and store carbon is reduced under hot and/or dry conditions. This implies that projected climate change will trigger a substantial net release of carbon in these New Mexico ecosystems (~3 Gt CO2 statewide by the end of the century), thereby acting as a positive feedback to climate change.  相似文献   

6.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

7.
Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N‐phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N‐induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed‐effects models to further determine the relative contributions of various factors to the N‐induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N‐induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment.  相似文献   

8.
Water‐use efficiency (WUE) has been recognized as an important characteristic of ecosystem productivity, which links carbon (C) and water cycling. However, little is known about how WUE responds to climate change at different scales. Here, we investigated WUE at leaf, canopy, and ecosystem levels under increased precipitation and warming from 2005 to 2008 in a temperate steppe in Northern China. We measured gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), evapotranspiration (ET), evaporation (E), canopy transpiration (Tc), as well as leaf photosynthesis (Pmax) and transpiration (Tl) of a dominant species to calculate canopy WUE (WUEc=GEP/T), ecosystem WUE (WUEgep=GEP/ET or WUEnee=NEE/ET) and leaf WUE (WUEl=Pmax/Tl). The results showed that increased precipitation stimulated WUEc, WUEgep and WUEnee by 17.1%, 10.2% and 12.6%, respectively, but decreased WUEl by 27.4%. Climate warming reduced canopy and ecosystem WUE over the 4 years but did not affect leaf level WUE. Across the 4 years and the measured plots, canopy and ecosystem WUE linearly increased, but leaf level WUE of the dominant species linearly decreased with increasing precipitation. The differential responses of canopy/ecosystem WUE and leaf WUE to climate change suggest that caution should be taken when upscaling WUE from leaf to larger scales. Our findings will also facilitate mechanistic understanding of the C–water relationships across different organism levels and in projecting the effects of climate warming and shifting precipitation regimes on productivity in arid and semiarid ecosystems.  相似文献   

9.
Increased fire frequency in the Great Basin of North America's intermountain West has led to large‐scale conversion of native sagebrush (Artemisia tridentata Nutt.) communities to postfire successional communities dominated by native and non‐native annual species during the last century. The consequences of this conversion for basic ecosystem functions, however, are poorly understood. We measured net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) during the first two dry years after wildfire using a 4‐m diameter (16.4 m3) translucent static chamber (dome), and found that both NEE and ET were higher in a postfire successional ecosystem (?0.9–2.6 µ mol CO2 m?2 s?1 and 0.0–1.0 mmol H2O m?2 s?2, respectively) than in an adjacent intact sagebrush ecosystem (?1.2–2.3 µ mol CO2 m?2 s?1 and ?0.1–0.8 mmol H2O m?2 s?2, respectively) during relatively moist periods. Higher NEE in the postfire ecosystem appears to be due to lower rates of above‐ground plant respiration while higher ET appears to be caused by higher surface soil temperatures and increased soil water recharge after rains. These patterns disappeared or were reversed, however, when the conditions were drier. Daily net ecosystem productivity (NEP; g C m?2 d?1), derived from multiple linear regressions of measured fluxes with continuously measured climate variables, was very small (close to zero) throughout most of the year. The wintertime was an exception in the intact sagebrush ecosystem with C losses exceeding C gains leading to negative NEP while C balance of the postfire ecosystem remained near zero. Taken together, our results indicate that wildfire‐induced conversion of native sagebrush steppe to ecosystems dominated by herbaceous annual species may have little effect on C balance during relatively dry years (except in winter months) but may stimulate water loss immediately following fires.  相似文献   

10.
The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight‐year‐long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co‐located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long‐time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines.  相似文献   

11.
Full accounting of ecosystem carbon (C) pools and fluxes in coastal plain ecosystems remains less studied compared with upland systems, even though the C stocks in these systems may be up to an order of magnitude higher, making them a potentially important component in regional C cycle. Here, we report C pools and CO2 exchange rates during three hydrologically contrasting years (i.e. 2005–2007) in a coastal plain loblolly pine plantation in North Carolina, USA. The daily temperatures were similar among the study years and to the long‐term (1971–2000) average, whereas the amount and timing of precipitation differed significantly. Precipitation was the largest in 2005 (147 mm above normal), intermediate in 2006 (48 mm below) and lowest in 2007 (486 mm below normal). The forest was a strong C sink during all years, sequestering 361 ± 67 (2005), 835 ± 55 (2006) and 724 ± 55 (2007) g C m?2 yr?1 according to eddy covariance measurements of net ecosystem CO2 exchange (NEE). The interannual differences in NEE were traced to drought‐induced declines in canopy and whole tree hydraulic conductances, which declined with growing precipitation deficit and decreasing soil volumetric water content (VWC). In contrast, the interannual differences were small in gross ecosystem productivity (GEP) and ecosystem respiration (ER), both seemingly insensitive to drought. However, the drought sensitivity of GEP was masked by higher leaf area index and higher photosynthetically active radiation during the dry year. Normalizing GEP by these factors enhanced interannual differences, but there were no signs of suppressed GEP at low VWC during any given year. Although ER was very consistent across the 3 years, and not suppressed by low VWC, the total respiratory cost as a fraction of net primary production increased with annual precipitation and the contribution of heterotrophic respiration (Rh) was significantly higher during the wettest year, exceeding new litter inputs by 58%. Although the difference was smaller during the other 2 years (Rh : litterfall ratio was 1.05 in 2006 and 1.10 in 2007), the soils lost about 109 g C m?2 yr?1, outlining their potential vulnerability to decomposition, and pointing to potential management considerations to protect existing soil C stocks.  相似文献   

12.
The effects of harvest on European forest net ecosystem exchange (NEE) of carbon and its photosynthetic and respiratory components (GPP (gross primary production) and TER (total ecosystem respiration)) were examined by comparing four pairs of mature/harvested sites in Europe via a combination of eddy covariance measurements and empirical modeling. Three of the comparisons represented high coniferous forestry (spruce in Britain, and pines in Finland and France), while a coppice‐with‐standard oak plantation was examined in Italy. While every comparison revealed that harvesting converted a mature forest carbon sink into a carbon source of similar magnitude, the mechanisms by which this occurred were very different according to species or management practice. In Britain, Finland, and France the annual sink (source) strength for mature (clear‐cut) stands was estimated at 496 (112), 138 (239), and 222 (225) g C m?2, respectively, with 381 (427) g C m?2 for the mature (coppiced) stand in Italy. In all three cases of high forestry in Britain, Finland, and France, clear‐cutting crippled the photosynthetic capacity of the ecosystem – with mature (clear‐cut) GPP of 1970 (988), 1010 (363), and 1600 (602) g C m?2– and also reduced ecosystem respiration to a lesser degree – TER of 1385 (1100), 839 (603), and 1415 (878) g C m?2, respectively. By contrast, harvesting of the coppice oak system provoked a burst in respiration – with mature (clear‐cut) TER estimated at 1160 (2220) gC m?2– which endured for the 3 years sampled postharvest. The harvest disturbance also reduced GPP in the coppice system – with mature (clear‐cut) GPP of 1600 (1420) g C m?2– but to a lesser extent than in the coniferous forests, and with near‐complete recovery within a few years. Understanding the effects of harvest on the carbon balance of European forest systems is a necessary step towards characterizing carbon exchange for timberlands on large scales.  相似文献   

13.
Variability and future alterations in regional and global climate patterns may exert a strong control on the carbon dioxide (CO2) exchange of grassland ecosystems. We used 6 years of eddy-covariance measurements to evaluate the impacts of seasonal and inter-annual variations in environmental conditions on the net ecosystem CO2 exchange (NEE), gross ecosystem production (GEP), and ecosystem respiration (ER) of an intensively managed grassland in the humid temperate climate of southern Ireland. In all the years of the study period, considerable uptake of atmospheric CO2 occurred in this grassland with a narrow range in the annual NEE from −245 to −284 g C m−2 y−1, with the exception of 2008 in which the NEE reached −352 g C m−2 y−1. None of the measured environmental variables (air temperature (Ta), soil moisture, photosynthetically active radiation, vapor pressure deficit (VPD), precipitation (PPT), and so on) correlated with NEE on a seasonal or annual scale because of the equal responses from the component fluxes GEP and ER to variances in these variables. Pronounced reduction of summer PPT in two out of the six studied years correlated with decreases in both GEP and ER, but not with NEE. Thus, the stable annual NEE was primarily achieved through a strong coupling of ER and GEP on seasonal and annual scales. Limited inter-annual variations in Ta (±0.5°C) and generally sufficient soil moisture availability may have further favored a stable annual NEE. Monthly ecosystem carbon use efficiency (CUE; as the ratio of NEE:GEP) during the main growing season (April 1–September 30) was negatively correlated with temperature and VPD, but positively correlated with soil moisture, whereas the annual CUE correlated negatively with annual NEE. Thus, although drier and warmer summers may mildly reduce the uptake potential, the annual uptake of atmospheric CO2, in this intensively managed grassland, may be expected to continue even under predicted future climatic changes in the humid temperate climate region.  相似文献   

14.
The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long‐term, multi‐level and multi‐factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m?2) were applied and the higher level was combined with supplemental summer rain. We made plot‐level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ13C and NDVI to examine responses to our treatments at ecosystem‐ and leaf‐levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2‐C budgets. Low‐level warming increased the magnitude of the ecosystem C sink. Meanwhile, high‐level warming made the ecosystem a source of C to the atmosphere. When high‐level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low‐level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf‐level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf‐level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain.  相似文献   

15.
中国北方针叶林生长季碳交换及其调控机制   总被引:1,自引:1,他引:0  
采用开路式涡动相关法对北方针叶林连续2个生长季节(2007和2008年)的碳交换及其影响因素进行分析.结果表明:北方针叶林生态系统总生产力(GEP)、生态系统呼吸(Re)和净生态系统碳交换(NEE)在6月下旬到8月中旬的生长旺盛期达到最大值,但各峰值出现的日期并不一致.2007和2008年北方针叶林生长季的日均GEP、日均Re、日均NEE分别为19.45、15.15、-1.45 g CO2·m-2·d-1和17.67、14.11、-1.37 g CO2·m-2·d-1,2007年碳交换明显大于2008年,这可能是生长季较高的平均温度及光合有效辐射引起(2007年为12.46 ℃和697 μmol·m-2·s-1,2008年为11,04 ℃和639 μmol·m-2·s-1).北方针叶林的GEP与温度和光合有效辐射具有很好的相关性,其中与气温的相关系数接近0.55(P<0.01);Re主要受温度调控,相关系数为0.66~0.72(P<0,01);NEE与光合有效辐射相关性最大,相关系数为0.59~0.63 (P<0.01).  相似文献   

16.
A large remaining source of uncertainty in global model predictions of future climate is how ecosystem carbon (C) cycle feedbacks to climate change. We conducted a field manipulative experiment of warming and nitrogen (N) addition in a temperate steppe in northern China during two contrasting hydrological growing seasons in 2006 [wet with total precipitation 11.2% above the long‐term mean (348 mm)] and 2007 (dry with total precipitation 46.7% below the long‐term mean). Irrespective of strong intra‐ and interannual variations in ecosystem C fluxes, responses of ecosystem C fluxes to warming and N addition did not change between the two growing seasons, suggesting independence of warming and N responses of net ecosystem C exchange (NEE) upon hydrological variations in the temperate steppe. Warming had no effect on NEE or its two components, gross ecosystem productivity (GEP) and ecosystem respiration (ER), whereas N addition stimulated GEP but did not affect ER, leading to positive responses of NEE. Similar responses of NEE between the two growing seasons were due to changes in both biotic and abiotic factors and their impacts on ER and GEP. In the wet growing season, NEE was positively correlated with soil moisture and forb biomass. Negative effects of warming‐induced water depletion could be ameliorated by higher forb biomass in the warmed plots. N addition increased forb biomass but did not affect soil moisture, leading to positive effect on NEE. In the dry growing season, NEE showed positive dependence on grass biomass but negative dependence on forb biomass. No changes in NEE in response to warming could result from water limitation on both GEP and ER as well as little responses of either grass or forb biomass. N addition stimulated grass biomass but reduced forb biomass, leading to the increase in NEE. Our findings highlight the importance of changes in abiotic (soil moisture, N availability) and biotic (growth of different plant functional types) in mediating the responses of NEE to climatic warming and N enrichment in the semiarid temperate steppe in northern China.  相似文献   

17.
Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought‐induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes.  相似文献   

18.
Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.  相似文献   

19.
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan.  相似文献   

20.
The advancement of spring and the differential ability of organisms to respond to changes in plant phenology may lead to “phenological mismatches” as a result of climate change. One potential for considerable mismatch is between migratory birds and food availability in northern breeding ranges, and these mismatches may have consequences for ecosystem function. We conducted a three‐year experiment to examine the consequences for CO2 exchange of advanced spring green‐up and altered timing of grazing by migratory Pacific black brant in a coastal wetland in western Alaska. Experimental treatments represent the variation in green‐up and timing of peak grazing intensity that currently exists in the system. Delayed grazing resulted in greater net ecosystem exchange (NEE) and gross primary productivity (GPP), while early grazing reduced CO2 uptake with the potential of causing net ecosystem carbon (C) loss in late spring and early summer. Conversely, advancing the growing season only influenced ecosystem respiration (ER), resulting in a small increase in ER with no concomitant impact on GPP or NEE. The experimental treatment that represents the most likely future, with green‐up advancing more rapidly than arrival of migratory geese, results in NEE changing by 1.2 µmol m?2 s?1 toward a greater CO2 sink in spring and summer. Increased sink strength, however, may be mitigated by early arrival of migratory geese, which would reduce CO2 uptake. Importantly, while the direct effect of climate warming on phenology of green‐up has a minimal influence on NEE, the indirect effect of climate warming manifest through changes in the timing of peak grazing can have a significant impact on C balance in northern coastal wetlands. Furthermore, processes influencing the timing of goose migration in the winter range can significantly influence ecosystem function in summer habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号