首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aclacinomycin methylesterase (RdmC) is one of the tailoring enzymes that modify the aklavinone skeleton in the biosynthesis of anthracyclines in Streptomyces species. The crystal structures of this enzyme from Streptomyces purpurascens in complex with the product analogues 10-decarboxymethylaclacinomycin T and 10-decarboxymethylaclacinomycin A were determined to nominal resolutions of 1.45 and 1.95 A, respectively. RdmC is built up of two domains. The larger alpha/beta domain shows the common alpha/beta hydrolase fold, whereas the smaller domain is alpha-helical. The active site and substrate binding pocket are located at the interface between the two domains. Decarboxymethylaclacinomycin T and decarboxymethylaclacinomycin A bind close to the catalytic triad (Ser102-His276-Asp248) in a hydrophobic pocket, with the sugar moieties located at the surface of the enzyme. The binding of the ligands is dominated by hydrophobic interactions, and specificity appears to be controlled mainly by the shape of the binding pocket rather than through specific hydrogen bonds. Mechanistic key features consistent with the structure of complexes of RdmC with product analogues are Ser102 acting as nucleophile and transition state stabilization by an oxyanion hole formed by the backbone amides of residues Gly32 and Met103.  相似文献   

2.
7,8-Dihydrobiopterin is not an intermediate in the de novo biosynthesis of tetrahydrobiopterin, the cofactor required for aromatic amino acid hydroxylations. However, N-acetyl-serotonin inhibition of sepiapterin reductase, an enzyme whose previously only known function was the reduction of sepiapterin to 7,8-dihydrobiopterin, completely inhibited biosynthesis of tetrahydrobiopterin by bovine adrenal medulla extracts. We have now shown that sepiapterin reductase catalyzes the reduction of tetrahydro-sepiapterin to tetrahydrobiopterin and that this reaction is N-acetyl-serotonin-sensitive. A new pathway for tetrahydrobiopterin biosynthesis is proposed which takes these observations into account and which involves tetrahydro intermediates.  相似文献   

3.
During the course of screening for new antitumor antibiotics, a new anthracycline antibiotic--aclacinomycin A was separated from the broth and mycelium of Streptomyces AC-57. The strain AC-57 was isolated from the soil collected in the Shanghai suburbs. According to its culture and physiological characteristics the producer was identified as Str. galilaeus AC-57. The broth and mycelium were extracted and treated with solvents as usual way. The aclacinomycin A was separated by silica-gel column chromatography eluted with chrolo-form-methanol. Aclacinomycin A, its aglycone and sugar components were identified by comparison of their physico-chemical and spectral data (MS, UV, IR, 1H-NMR, and 13C-NMR) with authentic compound, purified from the market sample.  相似文献   

4.
Experiments were carried out to investigate the effect of organic components of the medium and cultivation conditions on the multiplication rate and urease biosynthesis by Staphylococcus saprophyticus L-1 cells isolated from natural sources. The yeast enzymic hydrolyzate and corn extract were found to be an adequate substitute for the costly organic components--peptone and yeast extract. The substitutes ensured a high level of urease biosynthesis and biomass accumulation. The biomass accumulation was maximum at pH 6.0-7.0 and the urease activity reached maximum at pH 6.0-6.5. The optimum temperature of cultivation was 37 degrees C. Enhanced aeration and constant pH during microbial cultivation in 250 1 fermenters did not increase the biomass accumulation or urease biosynthesis as compared to flask cultivation. The study of urease isolation from the cell extract showed that the ratio of 3 volumes of ethanol to 1 volume of homogenate was optimum and provided the best precipitation of the enzyme. Preliminary thermal treatment of the cell extract increased the urease activity by 2.5 times. In this situation the activity yield was close to 100%.  相似文献   

5.
Puan KJ  Wang H  Dairi T  Kuzuyama T  Morita CT 《FEBS letters》2005,579(17):3802-3806
Although flavodoxin I is indispensable for Escherichia coli growth, the exact pathway(s) where flavodoxin I is essential has not been identified. We performed transposon mutagenesis of the flavodoxin I gene, fldA, in an E. coli strain that expressed mevalonate pathway enzymes and that had a point mutation in the lytB gene of the MEP pathway resulting in the accumulation of (E)-4-hydroxy-3-methylbutyl-2-enyl pyrophosphate (HMBPP). Disruption of fldA abrogated mevalonate-independent growth and dramatically decreased HMBPP levels. The fldA- mutant grew with mevalonate indicating that the essential role of flavodoxin I under aerobic conditions is in the MEP pathway. Growth was restored by fldA complementation. Since GcpE (which synthesizes HMBPP) and LytB are iron-sulfur enzymes that require a reducing system for their activity, we propose that flavodoxin is essential for GcpE and possibly LytB activity. Thus, the essential role for flavodoxin I in E. coli is in the MEP pathway for isoprenoid biosynthesis.  相似文献   

6.
L-2-Aminobutyric acid was synthesised in a transamination reaction from L-threonine and L-aspartic acid as substrates in a whole cell biotransformation using recombinant Escherichia coli K12. The cells contained the cloned genes tyrB, ilvA and alsS which respectively encode tyrosine aminotransferase of E. coli, threonine deaminase of E. coli and alpha-acetolactate synthase of B. subtilis 168. The 2-aminobutyric acid was produced by the action of the aminotransferase on 2-ketobutyrate and L-aspartate. The 2-ketobutyrate is generated in situ from L-threonine by the action of the deaminase, and the pyruvate by-product is eliminated by the acetolactate synthase. The concerted action of the three enzymes offers significant yield and purity advantages over the process using the transaminase alone with an eight to tenfold increase in the ratio of product to the major impurity.  相似文献   

7.
《FEBS letters》1986,202(2):274-276
The enzyme L-(+)-tartrate dehydratase has been isolated from extracts of Pseudomonas putida by a one-step procedure involving dye-ligand chromatography. The enzyme loses activity rapidly in the absence of Fe2+; concentrated solutions have a brown colour typical of iron-sulphur proteins. Analysis of iron and acid-labile sulphide indicated 3–5 atoms of each per molecule of 100 kDa. The enzyme's structure consists of four subunits, two each of 23 and 27 kDa.  相似文献   

8.
Colicin M is an inhibitor of murein biosynthesis.   总被引:10,自引:7,他引:3       下载免费PDF全文
Colicin M inhibited the incorporation of DL + meso-2,6-diamino[3,4,5-3H]pimelic acid into the murein (peptidoglycan) of growing cells of Escherichia coli W7 dap lys. The inhibition of the UDP-N-acetylmuramyl pentapeptide-dependent incorporation of UDP-N-acetyl-D-[U-14C]glucosamine into isolated cell envelopes indicated interference with a late step of murein biosynthesis. After the inhibition of murein biosynthesis, cells lysed, and they released lysis products of murein. In vitro, the murein biosynthesis of colicin M-tolerant mutants (tolM) was inhibited by colicin M. Therefore, tolerance is probably conferred by an impaired uptake of an altered fixation close to the target site and not by a mutation of the target itself. Preliminary studies with beta-lactam antibiotics and with mutants in penicillin-binding proteins did not reveal a specific enzymatic step inhibited by colicin M. The unique action among the colicins renders colicin M a potentially useful tool for studying murein biosynthesis.  相似文献   

9.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

10.
Selenophosphate synthetase (SelD) generates the selenium donor for selenocysteine biosynthesis in eubacteria. One homologue of SelD in eukaryotes is SPS1 (selenophosphate synthetase 1) and a second one, SPS2, was identified as a selenoprotein in mammals. Earlier in vitro studies showed SPS2, but not SPS1, synthesized selenophosphate from selenide, whereas SPS1 may utilize a different substrate. The roles of these enzymes in selenoprotein synthesis in vivo remain unknown. To address their function in vivo, we knocked down SPS2 in NIH3T3 cells using small interfering RNA and found that selenoprotein biosynthesis was severely impaired, whereas knockdown of SPS1 had no effect. Transfection of SPS2 into SPS2 knockdown cells restored selenoprotein biosynthesis, but SPS1 did not, indicating that SPS1 cannot complement SPS2 function. These in vivo studies indicate that SPS2 is essential for generating the selenium donor for selenocysteine biosynthesis in mammals, whereas SPS1 probably has a more specialized, non-essential role in selenoprotein metabolism.  相似文献   

11.
Glycosylation pattern in cosmomycins is a distinctive feature among anthracyclines. These antitumor compounds possess two trisaccharide chains attached at C-7 and C-10, each of them with structural variability, mainly at the distal deoxysugar moieties. We have characterized a 14-kb chromosomal region from Streptomyces olindensis containing 13 genes involved in cosmomycin biosynthesis. Two of the genes, cosG and cosK, coding for glycosyltransferase were inactivated with the generation of five new derivatives. Structural elucidation of these compounds showed altered glycosylation patterns indicating the capability of both glycosyltransferases of transferring deoxysugars to both sides of the aglycone and the flexibility of CosK with respect to the deoxysugar donor. A model is proposed for the glycosylation steps during cosmomycins biosynthesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

12.
The lipopolysaccharide (LPS) isolated from certain important Gram-negative pathogens including a human pathogen Yersinia pestis and opportunistic pathogens Burkholderia mallei and Burkholderia pseudomallei contains d-glycero-d-talo-oct-2-ulosonic acid (Ko), an isosteric analog of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo). Kdo 3-hydroxylase (KdoO), a Fe2+/α-KG/O2 dependent dioxygenase from Burkholderia ambifaria and Yersinia pestis is responsible for Ko formation with Kdo2-lipid A as a substrate, but in which stage KdoO functions during the LPS biosynthesis has not been established. Here we purify KdoO from B. ambifaria (BaKdoO) to homogeneity for the first time and characterize its substrates. BaKdoO utilizes Kdo2-lipid IVA or Kdo2-lipid A as a substrate, but not Kdo-lipid IVAin vivo as well as in vitro and Kdo-(Hep)kdo-lipid A in vitro. These data suggest that KdoO is an inner core assembly enzyme that functions after the Kdo-transferase KdtA but before the heptosyl-transferase WaaC enzyme during the Ko-containing LPS biosynthesis.  相似文献   

13.
A cysteine auxotroph of Cytophaga johnsonae was able to incorporate sulfur from sulfate into cysteate, and thus into sulfonolipid, in the absence of cysteine synthesis. This indicates that cysteine is not an obligatory intermediate of the cysteate biosynthetic pathway even though cysteine sulfur can be utilized for cysteate synthesis.  相似文献   

14.
Authentic N omega-hydroxy-L-arginine was synthesized and used to determine whether it is an intermediate in nitric oxide (.NO) synthesis from L-arginine by macrophage .NO synthase. The apparent Km (6.6 microM) and Vmax (99 nmol x min-1 x mg-1) observed with N omega-hydroxy-L-arginine were similar to those observed with L-arginine (Km = 2.3 microM; Vmax = 54 mumol x min-1 x mg-1). N omega-Hydroxy-D-arginine was not a substrate. Stable isotope studies showed that .NO synthase exclusively oxidized the hydroxylated nitrogen of N omega-hydroxy-L-arginine, forming .NO and L-citrulline. As with L-arginine, O2 was the source of the ureido oxygen in L-citrulline from N omega-hydroxy-L-arginine. In the presence of excess N omega-hydroxy-L-arginine, .NO synthase generated a metabolite of L-[14C]arginine that cochromatographed with authentic N omega-hydroxy-L-arginine. The labeled metabolite exhibited identical chromatographic behavior in three solvent systems and generated the same product (L-citrulline) upon alkaline hydrolysis as authentic N omega-hydroxy-L-arginine. Experiments were then run to identify which redox cofactor (NADPH or tetrahydrobiopterin) participated in the enzymatic synthesis of N omega-hydroxy-L-arginine. Both cofactors were required for synthesis of .NO from either N omega-hydroxy-L-arginine or L-arginine. However, with L-arginine, the synthesis of 1 mol of .NO was coupled to the oxidation of 1.52 +/- 0.02 mol of NADPH; whereas with N omega-hydroxy-L-arginine, only 0.53 +/- 0.04 mol of NADPH was oxidized per mol of .NO formed. These results support a mechanism in which N omega-hydroxy-L-arginine is generated as an intermediate in .NO synthesis through an NADPH-dependent hydroxylation of L-arginine.  相似文献   

15.
YgaF, a protein of previously unknown function in Escherichia coli, was shown to possess noncovalently bound flavin adenine dinucleotide and to exhibit L-2-hydroxyglutarate oxidase activity. The inability of anaerobic, reduced enzyme to reverse the reaction by reducing the product alpha-ketoglutaric acid is explained by the very high reduction potential (+19 mV) of the bound cofactor. The likely role of this enzyme in the cell is to recover alpha-ketoglutarate mistakenly reduced by other enzymes or formed during growth on propionate. On the basis of the identified function, we propose that this gene be renamed lhgO.  相似文献   

16.
In maize (Zea mays), the mitogen‐activated protein kinase ZmMPK5 has been shown to be involved in abscisic acid (ABA)‐induced antioxidant defence and to enhance the tolerance of plants to drought, salt stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, using ZmMPK5 as bait in yeast two‐hybrid screening, a protein interacting with ZmMPK5 named ZmABA2, which belongs to a member of the short‐chain dehydrogenase/reductase family, was identified. Pull‐down assay and bimolecular fluorescence complementation analysis and co‐immunoprecipitation test confirmed that ZmMPK5 interacts with ZmABA2 in vitro and in vivo. Phosphorylation of Ser173 in ZmABA2 by ZmMPK5 was shown to increase the activity of ZmABA2 and the protein stability. Various abiotic stimuli induced the expression of ZmABA2 in leaves of maize plants. Pharmacological, biochemical and molecular biology and genetic analyses showed that both ZmMPK5 and ZmABA2 coordinately regulate the content of ABA. Overexpression of ZmABA2 in tobacco plants was found to elevate the content of ABA, regulate seed germination and root growth under drought and salt stress and enhance the tolerance of tobacco plants to drought and salt stress. These results suggest that ZmABA2 is a direct target of ZmMPK5 and is involved in ABA biosynthesis and functions.  相似文献   

17.
A glycosyltransferase gene, rhoG, involved in the biosynthesis of the anthracycline antibiotic beta-rhodomycin was isolated as a 4.1-kb DNA fragment containing rhoG and its flanking region from Streptomyces violaceus by degenerate and inverse PCR. Sequencing analysis showed that rhoG was located in a gene cluster involved in the biosynthesis of the constitutive deoxysugar of beta-rhodomycin. The function of rhoG was verified by gene disruption, which was generated by replacing the internal 0.9-kb region of S. violaceus chromosome with a fragment including the SacI-blunted region. The rhoG disruption resulted in complete loss of beta-rhodomycin productivity, along with the accumulation of a non-glycosyl intermediate epsilon-rhodomycinone. In addition, the complementation test demonstrated that rhoG restored beta-rhodomycin production in this gene disruptant. These results indicated that rhoG is the glycosyltransferase gene responsible for the glycosylation of epsilon-rhodomycinone in beta-rhodomycin biosynthesis.  相似文献   

18.
Thromboxane A2 biosynthesis in human disease   总被引:6,自引:0,他引:6  
Thromboxane A2 (TxA2), the predominant cyclooxygenase product of human platelets, is a potent vasoconstrictor and platelet agonist. Although its biological properties are readily appreciable in vitro, it has been difficult to define its biological importance in vivo. To a large extent this reflected the problems associated with efforts to monitor biosynthesis of this eicosanoid and the lack of selective pharmacological probes that prevented the synthesis of TxA2 or antagonized its biological action in vivo. Recently the analysis of urinary metabolites of TxB2 has become simplified so that the methodology is readily applicable to clinical studies. This provides a noninvasive, time-integrated index of Tx biosynthesis. Although one cannot definitively establish a tissue of origin for metabolites measured in urine, indirect evidence suggests that urinary TxB2 derives primarily from the kidney whereas its dinor metabolite predominantly reflects platelet biosynthesis under physiological conditions. Although plasma concentrations of TxB2 are readily confounded by platelet activation ex vivo, the enzymatic metabolites formed from TxB2 have recently been identified and appear to bypass this problem. Combined analysis of long-lived (e.g., 11-dehydro-TxB2) and short-lived (e.g., 2,3-dinor-TxB2) metabolites in plasma promise to more accurately localize phasic increases in the biosynthesis of TxA2 and have been paralleled by the development of antagonists of the TxA2/prostaglandin endoperoxide receptor and their study of humans. The use of such specific probes in conditions characterized by abnormal biosynthesis of TxA2 promises to define the biological role of this mediator for humans.  相似文献   

19.
20.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号