首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solubilization and biodegradation of whole microbial cells by an aerobic thermophilic microbial population was investigated over a 72 h period. Various parameters were followed including total suspended solids reduction, changes in the dissolved organic carbon, protein and carbohydrate concentrations, and carboxylic acid production and utilisation. From the rates of removal of the various fractions a simple model for the biodegradation processes is proposed and verified with respect to acetic acid production and utilization, and total suspended solids removal. The process is initiated by enzymic degradation of the substrate microbe cell walls followed by growth on the released soluble substrates at low dissolved oxygen concentration with concommitant carboxylic acid production. Subsequent utilization of the unbranched, lower molecular weight carboxylic acids allows additional energy supply following exhaustion of the easily utilisable soluble substrate from microbial cell hydrolysis.List of Symbols Y Xp/Xs kg/kg yield process microbes on substrate yeast cells - Y Xp/Ac kg/kg yield process microbes on acetate - Y Ac/Ss kg/kg yield acetate produced by process microbes growing on substrate yeast cells - Y Ss/Xs kg/kg yield soluble substrate from lysis of yeast cells - Y Ss/Xp kg/kg yield soluble substrate from lysis of process microbes - Y P/Xs kg/kg yield particulates from lysis of yeast cells - Y P/Xp kg/kg yield particulates from lysis of process microbes - max (Ss) h–1 maximum specific growth rate constant for growth of process microbes on soluble substrate - max (Ac) h–1 maximum specific growth rate constant for growth of process microbes on acetate - Ks Ss kg/m3 saturation coefficient for growth of process microbes on soluble substrate - Ks Ac kg/m3 saturation coefficient for growth of process microbes on acetate - K d h–1 death/lysis rate constant for process microbes - K i kg/m3 inhibition constant for growth of process microbes on acetate - K L h–1 lysis rate constant for whole yeast cells - K h h–1 hydrolysis rate constant for particulate biomass  相似文献   

2.
Neither salicylate nor ibuprofen was a substrate or inhibitor of the long-chain fatty acid: CoA ligase. In contrast, all three xenobiotic-metabolizing medium-chain fatty acid:CoA ligases (XL-I, XL-II, and XL-III) had activity toward salicylate. The Km value for salicylate was similar for all three forms (2 to 3 μM), but XL-II and XL-III had higher activity at Vmax. For ibuprofen, only XL-III catalyzed its activation, and it had a Km for ibuprofen of 36 μM. Studies of salicylate inhibition of XL-I, XL-II, and XL-III revealed that it inhibited the benzoate activity of all three forms with K1 values of ca. 2 μM, which is in agreement with the Km values obtained with salicylate as substrate. Kinetic analysis revealed that salicylate conjugation by all three forms is characterized by substrate inhibition when salicylate exceeds ca. 20 μM. Substrate inhibition was more extensive with XL-I and XL-III. Previous work on the ligases employed assay concentrations of salicylate in the range of 0.1 to 1.0 mM, which are clearly inhibitory, particularly toward XL-I and XL-III. Thus, activity was not properly measured in previous studies, which accounts for the fact that salicylate conjugation was only found with one form, which is most likely XL-II since it has the highest Vmax activity and shows the least amount of substrate inhibition. Studies with ibuprofen indicated that it inhibited XL-I, XL-II, and XL-III, with K1 values being in the range of 75–125 μM. The short-chain ligase was inhibited by both salicylate and ibuprofen with K1 values of 93 and 84 μM, respectively. It was concluded that pharmacological doses of salicylate, but not ibuprofen, will affect the metabolism of medium-chain fatty acids and carboxylic acid xenobiotics and that the previously described mitochondrial ibuprofen:CoA ligase activity is attributable to XL-III. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Amino acid residues in the active site of quinoline 2-oxidoreductase (Qor) that are deemed important for substrate binding and turnover were replaced by site-directed mutagenesis. The apparent kcat values for quinoline were reduced 2.4-, 38-, 40-, and 199-fold in the protein variants QorA259G, QorW331G, QorV373A, and QorA546G, respectively. The substitution A259G did not significantly alter Km app. Despite the presumed crucial role of W331 and V373 in substrate positioning, the replacements W331G (Km app: 0.33 mM) and V373A (Km app: 0.41 mM) only slightly affected affinity for quinoline (Km app of Qor: 0.12 mM). QorA546G showed an increased affinity for quinoline and quinoxaline, as suggested by its 4.3- and 7.5-fold decrease in Km app (quinoline) and Km app (quinoxaline), respectively, compared with Qor. The relative activities of the protein variants towards substituted quinolines differed from those of Qor. QorW331G, for example, may be suitable for hydroxylation of quinoxaline and C4-substituted quinolines.  相似文献   

4.
Summary The soil isolate Cellulomonas cellulans AM8 produces an extracellular l-amino acid oxidase (L-AAO) with broad substrate specificity. The strain produced up to 0.35 unit (U)/ml of the extracellular L-AAO in a simple medium containing glycerol and yeast extract. The enzyme was easily purified up to 30 U/mg protein using Phenyl-Sepharose fast flow. The purified enzyme migrated as single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of 55 kDa. On native PAGE the molecular mass was approx. 300 000 kDa, which may be due to aggregation. With the exception of glycine, proline, and threonine, all the amino acids normally constituting proteins were oxidized. The V max values from 0.7 to 35.2 U/mg for aspartic acid and lysine, respectively, and the K m values from 0.007 to 7.1 mm for cysteine and valine, respectively, were obtained at 25° C and pH 7.0 in oxygen-saturated solutions. The L-AAO had a pH optimum of 6.5–7.5. It was stable for several months at — 30° C and for some days at 35° C. Ferricyanide served as an electron acceptor with a V max of 50 U/mg and K m for 0.3 mm with phenylalanine as the substrate. Correspondence to: R. D. Schmid  相似文献   

5.
When expressed in Xenopus oocytes KAAT1 increases tenfold the transport of l-leucine. Substitution of NaCl with 100 mm LiCl, RbCl or KCl allows a reduced but significant activation of l-leucine uptakes. Chloride-dependence is not strict since other pseudohalide anions such as thyocyanate are accepted. KAAT1 is highly sensitive to pH. It can transport l-leucine at pH 5.5 and 8, but the maximum uptake has been observed at pH 10, near to the physiological pH value, when amino and carboxylic groups are both deprotonated. The pH value mainly influences the V max in Na+ activation curves and l-leucine kinetics. The kinetic parameters are K mNa = 4.6 ± 2 mm, V maxNa = 14.8 ± 1.7 pmol/oocyte/5 min for pH 8.0 and K mNa = 2.8 ± 0.7 mm, V maxNa = 31.3 ± 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic parameters of l-leucine uptake are: K m = 120.4 ± 24.2 μm, V max = 23.2 ± 1.4 pmol/oocyte/5 min at pH 8.0 and K m = 81.3 ± 24.2 μm, V max = 65.6 ± 3.9 pmol/oocyte/5 min at pH 10.0. On the basis of inhibition experiments, the structural features required for KAAT1 substrates are: (i) a carboxylic group, (ii) an unsubstituted α-amino group, (iii) the side chain is unnecessary, if present it should be uncharged regardless of length and ramification. Received: 27 April 1999/Revised: 10 January 2000  相似文献   

6.
The influence of Ca homoionic clay minerals (montmorillonite, illite, and kaolinite) on the activity,K m , andV m values of acid phosphatase was examined in model experiments. At each substrate (p-nitrophenyl phosphate) level tested, the addition of increasing amounts of clays (50, 100, and 150 mg, respectively) decreased the activity and increased theK m value from 1.43×10–3 m PNP (in the soluble state) to 82.3×10–3M (montmorillonite), 8.02×10–3 m (kaolinite), and 7.65×10–3 m (illite) at the 150 mg level. The maximum enzyme reaction velocity (V m ) remained nearly constant at different amounts of kaolinite and illite, but increased remarkably with rising quantities of montmorillonite. Apparently, the substrate affinity of sorbed acid phosphatase is significantly lower with montmorillonite than with kaolinite or illite. This may be ascribed to an intensive sorption of both substrate and enzyme to the surface as well as to interlattice sites of montmorillonite.  相似文献   

7.
Bio-based 5-hydroxymethylfurfural (HMF) serves as an important platform for several chemicals, among which 2,5-furan dicarboxylic acid (FDCA) has attracted considerable interest as a monomer for the production of polyethylene furanoate (PEF), a potential alternative for fossil-based polyethylene terephthalate (PET). This study is based on the HMF oxidizing activity shown by Mycobacterium sp. MS 1601 cells and investigation of the enzyme catalysing the oxidation. The Mycobacterium whole cells oxidized the HMF to FDCA (60% yield) and hydroxymethyl furan carboxylic acid (HMFCA). A gene encoding a novel bacterial aryl alcohol oxidase, hereinafter MycspAAO, was identified in the genome and was cloned and expressed in Escherichia coli Bl21 (DE3). The purified MycspAAO displayed activity against several alcohols and aldehydes; 3,5 dimethoxy benzyl alcohol (veratryl alcohol) was the best substrate among those tested followed by HMF. 5-Hydroxymethylfurfural was converted to 5-formyl-2-furoic acid (FFCA) via diformyl furan (DFF) with optimal activity at pH 8 and 30–40°C. FDCA formation was observed during long reaction time with low HMF concentration. Mutagenesis of several amino acids shaping the active site and evaluation of the variants showed Y444F to have around 3-fold higher kcat/Km and ~1.7-fold lower Km with HMF.  相似文献   

8.
Summary Rare mutations that alter the substrate specificity of proline permease cluster in discrete regions of theputP gene, suggesting that they may replace amino acids at the active site of the enzyme. IfputP substrate specificity mutations directly alter the active site of proline permease, the mutants should show specific defects in the kinetics of proline transport. In order to test this prediction, we examined the kinetics of threeputP substrate specificity mutants. One class of mutation increases theK m over 120-fold but only decreases theV max fourfold. SuchK m mutants may be specifically defective in substrate recognition, thus identifying an amino acid critical for substrate binding. Another class of mutation decreases theV max 80-fold without changing theK m .V max mutants appear to alter the rate of substrate translocation without affecting the substrate binding site. The last class of mutation alters both theK m andV max of proline transport. These results indicate that substrate specificity mutations alter amino acids critical for Na+/proline symport.  相似文献   

9.
An isoenzyme of human liver acid phosphatase (orthophosphoric monoester phosphohydrolase (acid optimum), EC 3.1.3.2) has been purified 4560-fold to homogeneity. The purification procedure includes ammonium sulfate fractionation, acid treatment, ion exchange chromatography on O-(carboxymethyl)-cellulose and DEAE-cellulose, Sephacryl S-200 chromatography, and affinity chromatography on Concanavalin A-Sepharose 4B. The homogeneous enzyme is a glycoprotein having 4% carbohydrate by weight in the form of mannose and glucosamine. In polyacrylamide gel electrophoresis under varied conditions of pH and cross-linking, the purified enzyme displays a single protein band coincident with activity. The native enzyme has a molecular weight of 93,000 as determined by gel elution chromatography and consists of two equivalent polypeptide chains. The subunit weight is 50,000–52,000 by sodium dodecyl sulfate gel electrophoresis. l-(+)-Tartrate is a strong competitive inhibitor of the enzyme; Ki is 4.3 × 10?7m at pH 4.8 in 50 mm sodium acetate/100 mm sodium chloride. Ki values for a number of other inhibitors are given. Although it catalyzes the hydrolysis of a variety of phosphomonoesters, this isoenzyme of human liver acid phosphatase does not hydrolyze adenosine 5′-diphosphate, adenosine 5′-triphosphate, pyrophosphate, or choline phosphate at a detectable rate. The values of V differ with different alcohol or phenol leaving groups. The pH dependence of Km and V values for the hydrolysis of p-nitrophenyl phosphate have been determined together with the pH dependence of Ki for l-(+)-tartrate. The pH dependence of both Km and V indicate the effect of substrate ionization (pK ~ 5.2) and the involvement of a group in the EScomplex having a pKa value of approximately 6–7 which is ascribed either to a phosphoryl-enzyme intermediate or to the ionization of substrate in the ES-complex. An irreversible modification of the enzyme and a rapid loss of enzymic activity occurs upon treatment of the enzyme with Woodward's reagent K. The enzyme is protected against inactivation by the presence of competitive inhibitors. These and other data suggest that at least one carboxylic acid group plays an important role in catalysis.  相似文献   

10.
Protein tyrosine phosphatase (PTP) targeted, peptide based chemical probes are valuable tools for studying this important family of enzymes, despite the inherent difficulty of developing peptides targeted towards an individual PTP. Here, we have taken a rational approach to designing a SHP-2 targeted, fluorogenic peptide substrate based on information about the potential biological substrates of SHP-2. The fluorogenic, phosphotyrosine mimetic phosphocoumaryl aminopropionic acid (pCAP) provides a facile readout for monitoring PTP activity. By optimizing the amino acids surrounding the pCAP residue, we obtained a substrate with the sequence Ac-DDPI-pCAP-DVLD-NH2 and optimized kinetic parameters (kcat = 0.059 ± 0.008 s−1, Km = 220 ± 50 µM, kcat/Km of 270 M−1s−1). In comparison, the phosphorylated coumarin moiety alone is an exceedingly poor substrate for SHP-2, with a kcat value of 0.0038 ± 0.0003 s−1, a Km value of 1100 ± 100 µM and a kcat/Km of 3 M−1s−1. Furthermore, this optimized peptide has selectivity for SHP-2 over HePTP, MEG1 and PTPµ. The data presented here demonstrate that PTP-targeted peptide substrates can be obtained by optimizing the sequence of a pCAP containing peptide.  相似文献   

11.
The effect of organic solvents on carboxypeptidase Y (a serine carboxypeptidase from yeast)-catalyzed hydrolysis of amino acid ester and peptide synthesis from N-acyl amino acid ester and amino acid amide was investigated.

The Km value of ester hydrolysis increased with an increase in the solvent content. Dioxane was the most effective and dimethyl sulfoxide (DMSO) the least, whilst Kcat showed a tendency to increase slightly in N, N-dimethylformamide (DMF) and DMSO. For dioxane and acetonitrile (MeCN) a maximum was observed.

In peptide formation from Fua-Phe-OEt and Gly-NH2, dioxane and MeCN supported high product yield at molar fractions smaller than ca. 0.05 but the yield decreased significantly at higher fractions, although a relatively constant selectivity (ratio of the peptide bond formed to the ester consumed) was maintained. DMSO gave rather low peptide yields and selectivity even at lower molar fractions. DMF showed an intermediate tendency.

An apparent saturation parameter of the amine component was evaluated and the dissociation constant of a complex between acyl-enzyme and amino acid amide (Kn), as well as the rate constant of aminolysis exerted by the amino acid amide bound correctly on the enzyme (Kn), was calculated by initial rate analysis of peptide formation. In contrast to Km values, Kn decreased with increasing concentrations of organic cosolvent. while a suppressive effect was observed (except for DMSO) on the Kn parameter.

Effects of the solvent practically immiscible in water was also studied by use of the enzyme physically “immobilized” on glass beads.  相似文献   

12.
A three-dimensional structural model of fructosyl amine oxidase from the marine yeast Pichia N1-1 was generated using the crystal structure of monomeric sarcosine oxidase from Bacillus sp. B-0618 as template. The putative active site region was investigated by site-directed mutagenesis, identifying several amino acid residues likely playing important roles in the enzyme reaction. Asn354 was identified as a residue that plays an important role in substrate recognition and that can be substituted in order to change substrate specificity while maintaining high catalytic activity. While the Asn354Ala substitution had no effect on the V max K m−1 value for fructosyl valine, the V max K m−1 value for fructosyl-ε N-lysine was decreased 3-fold, thus resulting in a 3-fold improvement in specificity for fructosyl valine over fructosyl-ε N-lysine.  相似文献   

13.
Summary Kinetic parameters were determined for esterification of dodecanol and decanoic acid in hexane catalysed by lipases from Rhizomucor miehei and Candida rugosa, after pre-equilibration to different values of thermodynamic water activity (aw). Vm increases with increasing aw, but so do the Km values for both substrates. The effect on Km for the alcohol probably represents competition between the first product and the second substrate, as expected for Ping-Pong kinetics. The rise in Km for the acid probably reflects the displacement of water molecules during substrate binding.  相似文献   

14.
The initial rates of ATP synthesis catalyzed by tightly coupled Paracoccus denitrificans plasma membrane were measured. The reaction rate was hyperbolically dependent on the substrates, ADP and inorganic phosphate (Pi). Apparent K m values for ADP and Pi were 7–11 and 60–120 μM, respectively, at saturating concentration of the second substrate (pH 8.0, saturating Mg2+). These values were dependent on coupling efficiency. The substrate binding in the ATP synthesis reaction proceeds randomly: K m value for a given substrate was independent of the concentration of the other one. A decrease of electrochemical proton gradient by the addition of malonate (when succinate served as the respiratory substrate) or by a decrease of steady-state level of NADH (when NADH served as the respiratory substrate) resulted in a proportional decrease of the maximal rates and apparent K m values for ADP and Pi (double substitution, ping-pong mechanism). The kinetic scheme for ATP synthesis was compared with that described previously for the proton-translocating ATP hydrolysis catalyzed by the same enzyme preparation (T. V. Zharova and A. D. Vinogradov (2006) Biochemistry, 45, 14552–14558).  相似文献   

15.
通过易错PCR提高鼠伤寒沙门氏菌丙氨酸消旋酶催化活性   总被引:2,自引:1,他引:1  
[目的] 通过易错PCR技术提高鼠伤寒沙门氏菌中丙氨酸消旋酶的催化活性。[方法] 利用易错PCR技术构建丙氨酸消旋酶基因alrSt的突变体文库,采用缺陷菌株UT5028筛选突变体基因,以D-氨基酸氧化酶偶联法检测各突变蛋白的活性,通过凝胶过滤层析法分析酶蛋白寡聚化状态,并采用HPLC检测酶蛋白的动力学参数。[结果] 经过易错PCR及定点突变技术最终获得了3个催化活性有所提高的突变体A3V、Y343H和A3VY343H,酶学特性分析发现,与野生型蛋白StAlr相比,突变体Y343H仅对底物L/D-丝氨酸的催化效率略有提高,kcat/Km值分别是StAlr的2.01和3.68倍;而突变体A3V则对底物L/D-丙氨酸或L/D-丝氨酸的Kmkcatkcat/Km值均有较大幅度的改变,其kcat/Km值分别是StAlr的105.51、97.36、4.63和10.73倍。凝胶过滤层析结果显示,突变体A3V在蛋白含量极低时就呈现出单体和二聚体共存状态,且随着蛋白含量的增加,其向二聚体状态迁移的速率最为明显。[结论] 丙氨酸消旋酶StAlr的第3位点是影响其催化活性和低聚合状态的关键位点。  相似文献   

16.
Carnosine synthetase was purified about 500-fold from mouse olfactory bulb to a specific activity of approx 25 nmol/min/mg. This is an increase of 800-fold over that previously reported for this enzyme from rat brain and 11 times higher than the most highly purified enzyme from chicken pectoral muscle. ATP was essential for activity and could not be replaced by ADP. NAD had no effect on the synthesis of carnosine. Of the β-alanine analogues tested, the purified mouse enzyme incorporated only γ-aminobutyric acid and β-amino-n-butyric acid into peptide linkage with histidine. Synthesis of carnosine by the mouse olfactory bulb enzyme was competitively inhibited by the histidine analogues, 1-methyl histidine and 3-methyl histidine, with Ki values which were at least 40 times the Km value for histidine (16 μM). Ornithine and lysine were more efficient β-alanine acceptors than 1-methyl histidine for the mouse enzyme. Enzyme from olfactory epithelium and leg skeletal muscle of mice also showed higher Ki values for 1–methyl histidine than the Km value for histidine. In contrast, carnosine-anserine synthetase from chicken pectoral muscle gave Km values for histidine, 1-methyl histidine and 3-methyl histidine, which were all in the range of 4–12 μM. The differences in substrate specificity between the enzyme from mouse and chicken implies alternate routes of anserine synthesis in these species and predicts the occurrence of certain novel peptides in mouse brain.  相似文献   

17.
The carboxylic groups of horseradish peroxidase were modified by 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate by the Koshland method. The catalytic properties of the native and modified peroxidase were studied in the presence ofN-ethylamide ofo-sulfobenzoylacetic acid (EASBA) at pH 5.0–7.5. In the oxidation ofo-dianisidine, EASBA is a competitive inhibitor of the carbidiimide-modified peroxidase, and it increases bothK m andV m in the case of the native enzyme. These data show that at least one of the carboxylic groups modified with carbodiimide is located at the area of the peroxidase active site.  相似文献   

18.
The reaction kinetics of the enzymatic of cephalexin from 7-aminodea-cetoxy cephalosporanic acid and phenylglycine methylester was studied using the synthesizing enzyme obtained from Xanthomonas citri. The activation energy, Km value for 7-aminodeacetoxy cephalosporanic acid and phenylglycine methylester, and Ki value for phenylglycine methylester were determined as 8.63 kcal/mol, 3.7mM, 14.5mM, and 70mM, respectively. The enzyme was found to be constitutive and susceptible to deactivation.  相似文献   

19.
The key precursors for nylon synthesis, that is, 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD), are produced from petroleum-based feedstocks. A sustainable biocatalytic alternative method from bio-based adipic acid has been demonstrated recently. However, the low efficiency and specificity of carboxylic acid reductases (CARs) used in the process hampers its further application. Herein, we describe a highly accurate protein structure prediction-based virtual screening method for the discovery of new CARs, which relies on near attack conformation frequency and the Rosetta Energy Score. Through virtual screening and functional detection, five new CARs were selected, each with a broad substrate scope and the highest activities toward various di- and ω-aminated carboxylic acids. Compared with the reported CARs, KiCAR was highly specific with regard to adipic acid without detectable activity to 6-ACA, indicating a potential for 6-ACA biosynthesis. In addition, MabCAR3 had a lower Km with regard to 6-ACA than the previously validated CAR MAB4714, resulting in twice conversion in the enzymatic cascade synthesis of HMD. The present work highlights the use of structure-based virtual screening for the rapid discovery of pertinent new biocatalysts.  相似文献   

20.
Apparent physical interaction between pea chloroplast (Pisum sativum L.) glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) and aldolase (EC 4.1.2.13) is seen in phase-partitioning, fluorescent-anisotropy and isoelectric-focusing experiments. Similarly, results obtained in phase-partitioning and isoelectric-focusing experiments indicate physical interaction between aldolase and triose-phosphate isomerase (EC 5.3.1.1). Kinetic experiments suggest that both aldolase-bound glyceraldehyde-3-phosphate and triose-phosphate isomerase bound glyceraldehyde-3-phosphate can act as substrate for glyceraldehyde-3-phosphate dehydrogenase. These results are consistent with the notion that there is interaction between these three enzymes both during photosynthetic CO2 fixation and during glycolysis in the chloroplast.Abbreviations FITC fluorescein isothiocyanate - glyceraldehyde3-P glyceraldehyde-3-phosphate - K partition coefficient - K m (ALD) apparent K m value obtained when aldolase levels are varied - K m (GAP) K m value obtained when glyceraldehyde-3-P concentrations are varied - K m (PGK) apparent K m value obtained when phosphoglycerate kinase levels are varied - K m (TPI) apparent K m value obtained when triose-P isomerase levels are varied - PEG polyethyleneglycol - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - triose-P triose phosphate We thank Fred J. Stevens, Argonne National Laboratory, for help in analysis of the tertiary structures, Göte Johansson, University of Lund, for hosting two of us in his laboratory where we did the initial phase-partitioning experiments, Chang-hou Li, Shanghai Research Centre of Biotechnology, for the use of the fluorimeter, Lawrence Sykora and the University of Illinois greenhouse staff for growing the pea plants, Jack T. Gibbons for electron microscopy, and Christie Aljets, Xua Ming Da, Xiang He, Arif Ali Khan, Fang Luo, Martha Pacold, Michael Pacold, Lei Shi, Hyun Moon Shin and Qi Zhao for their assistance with these experiments. Support came from the University of Illinois-Chicago Research Board, the US National Science Foundation (Grants DCB 9018265, INT 91-15490 and INT 91-13311) and the Chinese National Science Foundation (Grant 39230050).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号