首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-talk between cAMP and [Ca(2+)](i) signaling pathways represents a general feature that defines the specificity of stimulus-response coupling in a variety of cell types including parotid acinar cells. We have reported recently that cAMP potentiates Ca(2+) release from intracellular stores, primarily because of a protein kinase A-mediated phosphorylation of type II inositol 1,4,5-trisphosphate receptors (Bruce, J. I. E., Shuttleworth, T. J. S., Giovannucci, D. R., and Yule, D. I. (2002) J. Biol. Chem. 277, 1340-1348). The aim of the present study was to evaluate the functional and molecular mechanism whereby cAMP regulates Ca(2+) clearance pathways in parotid acinar cells. Following an agonist-induced increase in [Ca(2+)](i) the rate of Ca(2+) clearance, after the removal of the stimulus, was potentiated substantially ( approximately 2-fold) by treatment with forskolin. This effect was prevented completely by inhibition of the plasma membrane Ca(2+)-ATPase (PMCA) with La(3+). PMCA activity, when isolated pharmacologically, was also potentiated ( approximately 2-fold) by forskolin. Ca(2+) uptake into the endoplasmic reticulum of streptolysin-O-permeabilized cells by sarco/endoplasmic reticulum Ca(2+)-ATPase was largely unaffected by treatment with dibutyryl cAMP. Finally, in situ phosphorylation assays demonstrated that PMCA was phosphorylated by treatment with forskolin but only in the presence of carbamylcholine (carbachol). This effect of forskolin was Ca(2+)-dependent, and protein kinase C-independent, as potentiation of PMCA activity and phosphorylation of PMCA by forskolin also occurred when [Ca(2+)](i) was elevated by the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor cyclopiazonic acid and was attenuated by pre-incubation with the Ca(2+) chelator, 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA). The present study demonstrates that elevated cAMP enhances the rate of Ca(2+) clearance because of a complex modulation of PMCA activity that involves a Ca(2+)-dependent step. Tight regulation of both Ca(2+) release and Ca(2+) efflux may represent a general feature of the mechanism whereby cAMP improves the fidelity and specificity of Ca(2+) signaling.  相似文献   

2.
Cheek TR  Thorn P 《Cell calcium》2006,40(3):309-318
We have combined fluorimetric measurements of the intracellular free Ca(2+) concentration ([Ca(2+)](i)) with the patch clamp technique, to investigate resting Ca(2+) entry in bovine adrenal chromaffin cells. Perfusion with nominally Ca(2+)-free medium resulted in a rapid, reversible decrease in [Ca(2+)](i), indicating a resting Ca(2+) permeability across the plasma membrane. Simultaneous whole-cell voltage-clamp showed a resting inward current that increased when extracellular Ca(2+) (Ca(2+)(o)) was lowered. This current had a reversal potential of around 0 mV and was carried by monovalent or divalent cations. In Na(+)-free extracellular medium there was a reduction in current amplitude upon removal of Ca(2+)(o), indicating the current can carry Ca(2+). The current was constitutively active and not enhanced by agents that promote Ca(2+)-store depletion such as thapsigargin. Extracellular La(3+) abolished the resting current, reduced resting [Ca(2+)](i) and inhibited basal secretion. Abolishment of resting Ca(2+) influx depleted the inositol 1,4,5-trisphosphate-sensitive Ca(2+) store without affecting the caffeine-sensitive Ca(2+) store. The results indicate the presence of a constitutively active nonselective cation conductance, permeable to both monovalent and divalent cations, that can regulate [Ca(2+)](i), the repletion state of the intracellular Ca(2+) store and the secretory response in resting cells.  相似文献   

3.
Intraneuronal calcium ([Ca(2+)](i)) regulation is altered in aging brain, possibly because of the changes in critical Ca(2+) transporters. We previously reported that the levels of the plasma membrane Ca(2+)-ATPase (PMCA) and the V(max) for enzyme activity are significantly reduced in synaptic membranes in aging rat brain. The goal of these studies was to use RNA(i) techniques to suppress expression of a major neuronal isoform, PMCA2, in neurons in culture to determine the potential functional consequences of a decrease in PMCA activity. Embryonic rat brain neurons and SH-SY5Y neuroblastoma cells were transfected with in vitro--transcribed short interfering RNA or a short hairpin RNA expressing vector, respectively, leading to 80% suppression of PMCA2 expression within 48 h. Fluorescence ratio imaging of free [Ca(2+)](i) revealed that primary neurons with reduced PMCA2 expression had higher basal [Ca(2+)](i), slower recovery from KCl-induced Ca(2+) transients, and incomplete return to pre-stimulation Ca(2+) levels. Primary neurons and SH-SY5Y cells with PMCA2 suppression both exhibited significantly greater vulnerability to the toxicity of various stresses. Our results indicate that a loss of PMCA such as occurs in aging brain likely leads to subtle disruptions in normal Ca(2+) signaling and enhanced susceptibility to stresses that can alter the regulation of Ca(2+) homeostasis.  相似文献   

4.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

5.
Aerobic exercise training is known to have profound cardioprotective effects in disease, yet cellular mechanisms remain largely undefined. We tested the hypothesis that increased sarcoplasmic reticulum Ca(2+) buffering and increased voltage-gated Ca(2+) channel density underlie coronary smooth muscle intracellular Ca(2+) (Ca(2+)(i)) dysregulation in diabetic dyslipidemia and that exercise training would prevent these increases. Yucatan swine were maintained in 1) control, 2) alloxan-induced hyperglycemic, 3) high fat/cholesterol fed, 4) hyperglycemic plus high fat/cholesterol fed (diabetic dyslipidemic), and 5) diabetic dyslipidemic plus exercise-trained (treadmill running) conditions. After 20 wk, the heart was removed and smooth muscle cells isolated from the right coronary artery. We utilized fura-2 imaging of Ca(2+)(i) levels to separate the functional role of the sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) from the Na(+)-Ca(2+) exchanger and the plasmalemmal Ca(2+)-ATPase, and whole-cell patch clamp to examine voltage-gated Ca(2+) channel current density (i.e., Ca(2+) influx). Results indicated that diabetic dyslipidemia impaired plasmalemmal Ca(2+) efflux, increased basal Ca(2+)(i) levels, increased SERCA protein and sarcoplasmic reticulum Ca(2+)(i) buffering, and elicited an approximately 50% decrease in voltage-gated Ca(2+) channel current density. Exercise training concurrent with the diabetic dyslipidemic state restored plasmalemmal Ca(2+) efflux, SERCA protein, sarcoplasmic reticulum Ca(2+)(i) buffering, and voltage-gated Ca(2+) channel current density to control levels. Interestingly, basal Ca(2+)(i) levels were significantly lower in the exercise-trained group compared with control. Collectively, these results demonstrate a crucial role for exercise in the prevention of diabetic dyslipidemia-induced Ca(2+)(i) dysregulation.  相似文献   

6.
ATP induced a biphasic increase in the intracellular Ca(2+)concentration ([Ca(2+)](i)), an initial spike, and a subsequent plateau in A549 cells. Erythromycin (EM) suppressed the ATP-induced [Ca(2+)](i) spike but only in the presence of extracellular calcium (Ca(2+)(o)). It was ineffective against ATP- and UTP-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] formation and UTP-induced [Ca(2+)](i) spike, implying that EM perturbs Ca(2+) influx from the extracellular space rather than Ca(2+)release from intracellular Ca(2+) stores via the G protein-phospholipase C-Ins(1,4,5)P(3) pathway. A verapamil-sensitive, KCl-induced increase in [Ca(2+)](i) and the Ca(2+) influx activated by Ca(2+) store depletion were insensitive to EM. 3'-O-(4-benzoylbenzoyl)-ATP evoked an Ca(2+)(o)-dependent [Ca(2+)](i) response even in the presence of verapamil or the absence of extracellular Na(+), and this response was almost completely abolished by EM pretreatment. RT-PCR analyses revealed that P2X(4) as well as P2Y(2), P2Y(4), and P2Y(6) are coexpressed in this cell line. These results suggest that in A549 cells 1) the coexpressed P2X(4) and P2Y(2)/P2Y(4) subtypes contribute to the ATP-induced [Ca(2+)](i) spike and 2) EM selectively inhibits Ca(2+) influx through the P2X channel. This action of EM may underlie its clinical efficacy in the treatment of airway inflammation.  相似文献   

7.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

8.
Spatial and temporal alterations in intracellular calcium [Ca(2+)](i) play a pivotal role in a wide array of neuronal functions. Disruption in Ca(2+) homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca(2+)-ATPase (PMCA) is a high affinity Ca(2+) transporter that plays a crucial role in the termination of [Ca(2+)](i) signals and in the maintenance of low [Ca(2+)](i) essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or 'lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca(2+) signaling in the central nervous system.  相似文献   

9.
10.
In the heart, insulin-like growth factor-1 (IGF-1) is a pro-hypertrophic and anti-apoptotic peptide. In cultured rat cardiomyocytes, IGF-1 induced a fast and transient increase in Ca(2+)(i) levels apparent both in the nucleus and cytosol, releasing this ion from intracellular stores through an inositol 1,4,5-trisphosphate (IP(3))-dependent signaling pathway. Intracellular IP(3) levels increased after IGF-1 stimulation in both the presence and absence of extracellular Ca(2+). A different spatial distribution of IP(3) receptor isoforms in cardiomyocytes was found. Ryanodine did not prevent the IGF-1-induced increase of Ca(2+)(i) levels but inhibited the basal and spontaneous Ca(2+)(i) oscillations observed when cardiac myocytes were incubated in Ca(2+)-containing resting media. Spatial analysis of fluorescence images of IGF-1-stimulated cardiomyocytes incubated in Ca(2+)-containing resting media showed an early increase in Ca(2+)(i), initially localized in the nucleus. Calcium imaging suggested that part of the Ca(2+) released by stimulation with IGF-1 was initially contained in the perinuclear region. The IGF-1-induced increase on Ca(2+)(i) levels was prevented by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, thapsigargin, xestospongin C, 2-aminoethoxy diphenyl borate, U-73122, pertussis toxin, and betaARKct (a peptide inhibitor of Gbetagamma signaling). Pertussis toxin also prevented the IGF-1-dependent IP(3) mass increase. Genistein treatment largely decreased the IGF-1-induced changes in both Ca(2+)(i) and IP(3). LY29402 (but not PD98059) also prevented the IGF-1-dependent Ca(2+)(i) increase. Both pertussis toxin and U73122 prevented the IGF-1-dependent induction of both ERKs and protein kinase B. We conclude that IGF-1 increases Ca(2+)(i) levels in cultured cardiac myocytes through a Gbetagamma subunit of a pertussis toxin-sensitive G protein-PI3K-phospholipase C signaling pathway that involves participation of IP(3).  相似文献   

11.
Multiple inositol polyphosphate phosphatase (MIPP) is an enzyme that, in vitro, has the interesting property of degrading higher inositol polyphosphates to the Ca2+ second messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), independently of inositol lipid breakdown. We hypothesized that a truncated cytosolic form of the largely endoplasmic reticulum-confined MIPP (cyt-MIPP) could represent an important new tool in the investigation of Ins(1,4,5)P3-dependent intracellular Ca2+ homeostasis. To optimize our ability to judge the impact of cyt-MIPP on intracellular Ca2+ concentration ([Ca2+]i) we chose a poorly responsive beta-cell line (HIT M2.2.2) with an abnormally low [Ca2+]i. Our results show for the first time in an intact mammalian cell that cyt-MIPP expression leads to a significant enhancement of Ins(1,4,5)P3 concentration. This is achieved without a significant interference from other cyt-MIPP-derived inositol phosphates. Furthermore, the low basal [Ca2+]i of these cells was raised to normal levels (35 to 115 nm) when they expressed cyt-MIPP. Noteworthy is that the normal feeble glucose-induced Ca2+ response of HIT M2.2.2 cells was enhanced dramatically by mechanisms related to this increase in basal [Ca2+]i. These data support the use of cyt-MIPP as an important tool in investigating Ins(1,4,5)P3-dependent Ca2+ homeostasis and suggest a close link between Ins(1,4,5)P3 concentration and basal [Ca2+]i, the latter being an important modulator of Ca2+ signaling in the pancreatic beta-cell.  相似文献   

12.
In cystic fibrosis (CF) airways, abnormal epithelial ion transport likely initiates mucus stasis, resulting in persistent airway infections and chronic inflammation. Mucus clearance is regulated, in part, by activation of apical membrane receptors coupled to intracellular calcium (Ca(2+)(i)) mobilization. We have shown that Ca(2+)(i) signals resulting from apical purinoceptor (P2Y(2)-R) activation are increased in CF compared with normal human airway epithelia. The present study addressed the mechanism for the larger apical P2Y(2)-R-dependent Ca(2+)(i) signals in CF human airway epithelia. We show that the increased Ca(2+)(i) mobilization in CF was not specific to P2Y(2)-Rs because it was mimicked by apical bradykinin receptor activation, and it did not result from a greater number of P2Y(2)-R or a more efficient coupling between P2Y(2)-Rs and phospholipase C-generated inositol 1,4,5-trisphosphate. Rather, the larger apical P2Y(2)-R activation-promoted Ca(2+)(i) signals in CF epithelia resulted from an increased density and Ca(2+) storage capacity of apically confined endoplasmic reticulum (ER) Ca(2+) stores. To address whether the ER up-regulation resulted from ER retention of misfolded DeltaF508 CFTR or was an acquired response to chronic luminal airway infection/inflammation, three approaches were used. First, ER density was studied in normal and CF sweat duct human epithelia expressing high levels of DeltaF508 CFTR, and it was found to be the same in normal and CF epithelia. Second, apical ER density was morphometrically analyzed in airway epithelia from normal subjects, DeltaF508 homozygous CF patients, and a disease control, primary ciliary dyskinesia; it was found to be greater in both CF and primary ciliary dyskinesia. Third, apical ER density and P2Y(2)-R activation-mobilized Ca(2+)(i), which were investigated in airway epithelia in a long term culture in the absence of luminal infection, were similar in normal and CF epithelia. To directly test whether luminal infection/inflammation triggers an up-regulation of the apically confined ER Ca(2+) stores, normal airway epithelia were chronically exposed to supernatant from mucopurulent material from CF airways. Supernatant treatment expanded the apically confined ER, resulting in larger apical P2Y(2)-R activation-dependent Ca(2+)(i) responses, which reproduced the increased Ca(2+)(i) signals observed in CF epithelia. In conclusion, the mechanism for the larger Ca(2+)(i) signals elicited by apical P2Y(2)-R activation in CF airway epithelia is an expansion of the apical ER Ca(2+) stores triggered by chronic luminal airway infection/inflammation. Greater ER-derived Ca(2+)(i) signals may provide a compensatory mechanism to restore, at least acutely, mucus clearance in CF airways.  相似文献   

13.
14.
D-Myo-inositol 1,4,5-trisphosphate (Ins[1,4-,5]P3) inhibits rat heart sarcolemmal Ca(2+)-ATPase activity (T. H. Kuo, Biochem. Biophys. Res. Commun. 152: 1111, 1988). We have studied the effect and mechanism of action of Ins(1,4,5)P3 and related inositol phosphates on human red cell membrane Ca(2+)-ATPase (EC 3.6.1.3) activity in vitro. At 10(-6) M, Ins(1,4,5)P3 and D-myo-inositol 4,5-bisphosphate (Ins[4,5]P2) inhibited human erythrocyte membrane Ca(2+)-ATPase activity in vitro by 42 and 31%, respectively. D-Myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 1-phosphate were not inhibitory. Enzyme inhibition by Ins(1,4,5)P3 was blocked by heparin. Exogenous purified calmodulin also stimulated red cell membrane Ca(2+)-ATPase activity; this stimulation was inhibited by Ins(1,4,5)P3. Ins(4,5)P2 and Ins(1,4,5)P3, but not Ins(1,4)P2, inhibited the binding of [125I]calmodulin to red cell membranes. Thus, specific inositol phosphates reduce plasma membrane Ca(2+)-ATPase activity and enhancement of the latter in vitro by purified calmodulin. The mechanism of these effects may in part relate to inhibition by inositol phosphates of binding of calmodulin to erythrocyte membranes.  相似文献   

15.
The effects of Alzheimer's disease-related amyloidogenic peptides on inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) mobilization were examined in Xenopus laevis oocytes. Intracellular Ca(2+) was monitored by electrophysiological measurement of the endogenous Ca(2+)-activated Cl(-) current. Application of a hyperpolarizing pulse released intracellular Ca(2+) in oocytes primed by pre-injection of a non-metabolizable inositol 1,4,5-trisphosphate analogue. The carboxyl terminus of the amyloid precursor protein inhibited inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca(2+) release in a dose-dependent manner. Equimolar beta-amyloid peptides Abeta(1-40) or Abeta(1-42) had no effect, and whereas a truncated carboxyl terminus lacking the Abeta domain was equipotent to the full-length one, a carboxyl terminus fragment lacking the NPTY sequence was less effective than the full-length fragment. The inhibition induced by the carboxyl terminus was not associated with the block of the Ca(2+)-dependent Cl(-) channel itself or compromised Ca(2+) influx. We conclude that the carboxyl terminus of the amyloid precursor protein inhibits inositol 1,4,5-trisphosphate-sensitive Ca(2+) release and could thus disrupt Ca(2+) homeostasis and that the carboxyl terminus is much more effective than the beta-amyloid fragments used. By perturbing the coupling of inositol 1,4,5-trisphosphate and Ca(2+) release, the carboxyl terminus of the amyloid precursor protein can potentially be involved in inducing the neural toxicity characteristic of Alzheimer's disease.  相似文献   

16.
We investigated the role of Na(+)-K(+)-Cl(-) cotransporter (NKCC1) in conjunction with Na(+)/Ca(2+) exchanger (NCX) in disruption of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress development in primary cortical neurons following in vitro ischemia. Oxygen-glucose deprivation (OGD) and reoxygenation (REOX) caused a rise in [Na(+)](cyt) which was accompanied by an elevation in [Ca(2+)](cyt). Inhibition of NKCC1 with its potent inhibitor bumetanide abolished the OGD/REOX-induced rise in [Na(+)](cyt) and [Ca(2+)](cyt). Moreover, OGD significantly increased Ca(2+)(ER) accumulation. Following REOX, a biphasic change in Ca(2+)(ER) occurred with an initial release of Ca(2+)(ER) which was sensitive to inositol 1,4,5-trisphosphate receptor (IP(3)R) inhibition and a subsequent refilling of Ca(2+)(ER) stores. Inhibition of NKCC1 activity with its inhibitor or genetic ablation prevented the release of Ca(2+)(ER). A similar result was obtained with inhibition of reversed mode operation of NCX (NCX(rev)). OGD/REOX also triggered a transient increase of glucose regulated protein 78 (GRP78), phospho-form of the alpha subunit of eukaryotic initiation factor 2 (p-eIF2alpha), and cleaved caspase 12 proteins. Pre-treatment of neurons with NKCC1 inhibitor bumetanide inhibited upregulation of GRP78 and attenuated the level of cleaved caspase 12 and p-eIF2alpha. Inhibition of NKCC1 reduced cytochrome C release and neuronal death. Taken together, these results suggest that NKCC1 and NCX(rev) may be involved in ischemic cell damage in part via disrupting ER Ca(2+) homeostasis and ER function.  相似文献   

17.
The isoform-specific interaction of plasma membrane Ca(2+)-ATPase (PMCA) pumps with partner proteins has been explored using a yeast two-hybrid technique. The 90 N-terminal residues of two pump isoforms (PMCA2 and PMCA4), which have a low degree of sequence homology, have been used as baits. Screening of 5 x 10(6) clones of a human brain cDNA library yielded approximately 100 LEU2- and galactoside-positive clones for both pumps. A clone obtained with the PMCA4 bait specified the epsilon-isoform of the 14-3-3 protein, whereas no 14-3-3epsilon clone was obtained with the PMCA2 bait. The 14-3-3epsilon protein immunoprecipitated with PMCA4 (not with PMCA2) when expressed in HeLa cells. Overexpression of 14-3-3epsilon in HeLa cells together with targeted aequorins showed that the ability of the cells to export Ca(2+) was impaired; stimulation with histamine, an inositol 1,4,5-trisphosphate-producing agonist, generated higher cytosolic [Ca(2+)] transients, higher post-transient plateaus of the cytosolic [Ca(2+)], and higher Ca(2+) levels in the endoplasmic reticulum lumen and in the subplasmalemmal domain. Thus, the interaction with 14-3-3epsilon inhibited PMCA4. Silencing of the 14-3-3epsilon gene by RNA interference significantly reduced the expression of 14-3-3epsilon, substantially decreasing the height of the histamine-induced cytosolic [Ca(2+)] transient and of the post-transient cytosolic [Ca(2+)] plateau.  相似文献   

18.
19.
Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C(2)C(12) murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca(2+)(i), which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) also induced a rise in Ca(2+)(i), but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca(2+)(i) induced by PIF and AngII was completely attenuated by the Zn(2+) chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn(2+). The Ca(2+)(i) rise induced by PIF was independent of the presence of extracellular Ca(2+), and attenuated by the Ca(2+) pump inhibitor thapsigargin, suggesting that the Ca(2+)(i) rise was due to release from intracellular stores. This rise in Ca(2+)(i) induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca(2+)(i), which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.  相似文献   

20.
We investigated heterocellular communication in rat mesenteric arterial strips at the cellular level using confocal microscopy. To visualize Ca(2+) changes in different cell populations, smooth muscle cells (SMCs) were loaded with Fluo-4 and endothelial cells (ECs) with Fura red. SMC contraction was stimulated using high K(+) solution and Phenylephrine. Depending on vasoconstrictor concentration, intracellular Ca(2+) concentration ([Ca(2+)](i)) increased in a subpopulation of ECs 5-11s after a [Ca(2+)](i) rise was observed in adjacent SMCs. This time interval suggests chemical coupling between SMCs and ECs via gap junctions. As potential chemical mediators we investigated Ca(2+) or inositol 1,4,5-trisphosphate (IP(3)). First, phospholipase C inhibitor U-73122 was added to prevent IP(3) production in response to the [Ca(2+)](i) increase in SMCs. In high K(+) solution, all SMCs presented global and synchronous [Ca(2+)](i) increase, but no [Ca(2+)](i) variations were detected in ECs. Second, 2-aminoethoxydiphenylborate, an inhibitor of IP(3)-induced Ca(2+) release, reduced the number of flashing ECs by 75+/-3% (n = 6). The number of flashing ECs was similarly reduced by adding the gap junction uncoupler palmitoleic acid. Thus, our results suggest a heterocellular communication through gap junctions from SMCs to ECs by diffusion, probably of IP(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号