首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A seven-step synthesis of 1,3-di-O-acetyl-5-O-benzoyl-2-deoxy-2-fluoro-D-arabinofuranose, a versatile intermediate in the synthesis of chemotherapeutically important nucleosides, was achieved from 1,2:5,6-di-O-isopropylidene-3-O-tosyl-alpha-D-allofuranose. The crucial steps were the fluorination by use of potassium fluoride in acetamide and the conversion of 6-O-benzoyl-3-deoxy-3-fluoro-D-glucofuranose into 5-O-benzoyl-2-deoxy-2-fluoro-3-O-formyl-D-arabinofuranose by periodate oxidation. Also described is the synthesis of 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)cytosine. This procedure affords good overall yields of products without formation of undesirable, isomeric intermediates and is suitable for large-scale preparations.  相似文献   

2.
Interesting and very promising antisense properties of 2'-deoxy-2'-fluoroarabinonucleic acids ((a) Wilds, C.J.; Damha, M.J. 2'-Deoxy-2'-fluoroarabinonucleosides and oligonucleotides (2'F-ANA): synthesis and physicochemical studies. Nucl. Acids Res. 2000, 28, 3625-3635; (b) Viazovkina, E.; Mangos, M.; Elzagheid, M.I.; Damha, M.J. Current Protocols in Nucleic Acid Chemistry 2002, 4.15.1-4.15.21) (2'F-ANA) has encouraged our research group to optimize the synthetic procedures for 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides (araF-N). The synthesis of araF-U, araF-T, araF-A and araF-C is straightforward, (Tann, C.H.; Brodfuehrer, P.R.; Brundidge, S.P.; Sapino, C., Jr. Howell H.G. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil (beta-FIAU) and 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)thymine (beta-FMAU). J. Org. Chem. 1985, 50, 3644-3647; Howell, H.G.; Brodfuehrer, P.R.; Brundidge, S.P.; Benigni, D.A.; Sapino, C., Jr. Antiviral nucleosides. A stereospecific, total synthesis of 2'-fluoro-2'-deoxy-beta-D-arabinofuranosyl nucleosides. J. Org. Chem. 1988, 53, 85-88; Maruyama, T.; Takamatsu, S.; Kozai, S.; Satoh, Y.; Izana, K. Synthesis of 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine bearing a selectively removable protecting group. Chem. Pharm. Bull. 1999, 47, 966-970) however, the synthesis of the guanine analogue is more complicated and affords poor to moderate yields of araF-G (4) ((a) Elzagheid, M.I.; Viazovkina, E.; Masad, M.J. Synthesis of protected 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides. Synthesis of 2'-fluoroarabino nucleoside phosphoramidites and their use in the synthesis of 2'F-ANA. Current Protocols in Nucleic Acid Chemistry 2002, 1.7.1-1.7.19; (b) Tennila, T.; Azhayeva, E.; Vepsalainen, J.; Laatikainen, R.; Azhayev, A.; Mikhailopulo, I. Oligonucleotides containing 9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-adenine and -guanine: synthesis, hybridization and antisense properties. Nucleosides, Nucleotides and Nucl. Acids 2000, 19, 1861-1884). Here we describe an efficient synthesis of araF-G (4) that involves coupling of 2-deoxy-2-fluoro-3,5-di-O-benzoyl-alpha-D-arabinofuranosyl bromide (1) with 2-chlorohypoxanthine (2) to afford 2-chloro-beta-araF-I (3) in 52% yield. Nucleoside (3) was transformed into araF-G (4) by treatment with methanolic ammonia (150 degrees C, 6 h) in 67% yield.  相似文献   

3.
4.
Establishment of a novel embryonic stem cell line by a modified procedure   总被引:1,自引:0,他引:1  
To generate mutant mice, embryonic stem (ES) cells are used as a vehicle for introducing mutations. The establishment of ES cells is diffucult because it requires specific skills and it is time-consuming. We established a novel ES cell line derived from hybrid mice between C57BL/6 and DBA/2 using a modified method. To collect a large number of preimplantational embryos, we collected embryos at the 8-cell stage and cultured them to blastocysts, whereas the usual procedure of preparing the delayed blastocysts demands technical skills. To eliminate unnecessary female cells at an initial stage of inner cell mass culture, male clones were selected by polymerase chain reaction to detect the mouseSry gene. The established ES cell line efficiently contributed to the germ-line when injected into 8-cell embryos of ICR mice. This potency was maintained after manipulation throughout gene targeting.Abbreviations DMEM Dulbecco's modified Eagle's medium - FBS fetal bovine serum - FIAU 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil - LIF leukemia inhibitory factor - NEAA non-essential amino acids  相似文献   

5.
1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranose and 1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido-beta-D-galactopyranose reacted with protected nucleosides in the presence of BF(3) as promoter at room temperature to give selectively 2-amino-2-deoxy-beta-glycosyl (1-->5)nucleosides in good yields. CD spectra and thermal melting studies showed that 2-amino-2-deoxy-beta-D-glucopyranosyl-(1-->5)-nucleosides could interact with RNA in solution and 2-deoxy-2-amino-beta-D-galactopyranosyl-(1-->5)-nucleosides (17-19) exhibit higher affinity to RNA than 2-deoxy-2-amino-beta-D-glucopyranosyl-(1-->5)-nucleosides (14-16). It indicated that the majority of interactions are established between the polar group of glycosylnucleosides and the sugar-phosphate backbone of RNA helices and weak stacking interaction is observed. The different configuration of hydroxyl group on the glycosyl moiety may affect the glycosyl-nucleoside binding to RNA by induced fit.  相似文献   

6.
Joe M  Lowary TL 《Carbohydrate research》2006,341(16):2723-2730
Described is the synthesis of polyprenyl 2-deoxy-2-fluoro-beta-D-arabinofuranosyl phosphate derivatives, including an analog of decaprenyl beta-D-arabinofuranosyl phosphate, the donor species used by the arabinosyltransferases involved in mycobacterial cell-wall biosynthesis. The targets were synthesized via a route involving the synthesis of a protected beta-D-arabinofuranosyl phosphate derivative, its coupling with a polyprenyl trichloroacetimidate, and then deprotection of the resulting product. The use of arabinofuranosyl phosphates with the monosaccharide hydroxyl groups protected as either silyl ethers or benzoate esters was explored. Although the coupling yields between the phosphate and polyprenyl trichloroacetimidates were comparable with either type of protecting group, access to the benzoyl-protected derivative was more efficient and therefore gave the products in higher overall yield.  相似文献   

7.
Ethyl 2-deoxy-2-tetrachlorophthalimido-1-thio-beta-D-glucopyranoside (7) was prepared from glucosamine hydrochloride in four steps with a 20-25% overall yield. Formation of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-tetrachlorophthalimido-beta-D- glucopyranoside (5) was found to be crucial for this reaction sequence since the corresponding alpha-1-acetate did not react in Lewis-acid-catalyzed ethylthio glycosidations. Formation of the beta-1-acetate (5) was achieved by treatment of 3,4,6-tri-O-acetyl-2-deoxy-2-tetrachlorophthalimido-alpha-D-glucop yranosyl bromide (4) with acetic acid under silver zeolite promotion. This was necessary because conditions normally used for beta-1-acetate formation were not tolerated by the tetrachlorophthalimido (TCP) group.  相似文献   

8.
1-(2-Amino-2-deoxy-beta-D-xylofuranosyl)cytosine (13) was synthesized by three routes: (a) coupling of 2-deoxy-3,5-di-O-p-nitrobenzoyl-2-(trifluoroacetamido)-D-xylofuranosyl chloride (5) with 2,4-dimethoxypyrimidine and subsequent treatment with methanolic ammonia, (b) coupling of 5 with 4-N-acetyl-2-O,4-N-bis(trimethylsilyl)cytosine followed by treatment with methanolic ammonia, and (c) thiation of 1-[3,5-di-O-acetyl-2-deoxy-2-(trifluoroacetamido)-beta-D-xylofuranosyl]uracil (6) by treatment with phosphorus pentasulfide in pyridine followed by amination of the resulting 4-thionucleoside 12 with metanolic ammonia. The best yield was obtained via route (a).  相似文献   

9.
Our chemo-enzymatic method was successfully applied to the synthesis of 2-chloro-2′-deoxyadenosine (CdA, cladribine) in two ways: 1) direct conversion of chemically synthesized 2-deoxy-α-D-ribose 1-phosphate (dRP) to CdA; 2) a two-step route via 9-(2-deoxy-β-D-ribos-1-yl)-2,6-dichloropurine (Cl2Pu-dR, 5).  相似文献   

10.
The expression of thymidine kinase in fungi, which normally lack this enzyme, will greatly aid the study of DNA metabolism and provide useful drug-sensitive phenotypes. The herpes simplex virus type-1 thymidine kinase gene ( tk ) was expressed in Neurospora crassa. tk was expressed as a fusion to N.crassa arg-2 regulatory sequences and as a hygromycin phosphotransferase-thymidine kinase fusion gene under the control of cytomegalovirus and SV40 sequences. Only strains containing tk showed thymidine kinase enzyme activity. In strains containing the arg-2 - tk gene, both the level of enzyme activity and the level of mRNA were reduced by growth in arginine medium, consistent with control through arg-2 regulatory sequences. Expression of thymidine kinase in N.crassa facilitated radioactive labeling of replicating DNA following addition of [3H]thymidine or [14C]thymidine to the growth medium. Thymidine labeling of DNA enabled demonstration that hydroxyurea can be used to block replication and synchronize the N.crassa mitotic cycle. Strains expressing thymidine kinase were also more sensitive than strains lacking thymidine kinase to anticancer and antiviral nucleoside drugs that are activated by thymidine kinase, including 5-fluoro-2'-deoxyuridine, 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouridine and trifluorothymidine. Finally, expression of thymidine kinase in N. crassa enabled incorporation of bromodeoxyuridine into DNA at levels sufficient to separate newly replicated DNA from old DNA using equilibrium centrifugation.  相似文献   

11.
The synthetic D-galactose analog 2-deoxy-2-fluoro-D-galactose (dGalF) offers unique advantages for studies of the D-galactose pathway by non-invasive techniques using 19F-NMR spectroscopy or positron emission from the 18F-labeled compound. The metabolism of 2-deoxy-2-fluoro-D-galactose was studied in rodents using the unlabeled, the 18F-labeled, and the 14C-labeled D-galactose analog. Analyses for the metabolites of 2-deoxy-2-fluoro-D-galactose were performed by HPLC, enzymatic methods, and 19F-NMR spectroscopy in vivo and in vitro. The metabolism of 2-deoxy-2-fluoro-D-galactose was most active in the liver which took up the major part of the administered dose of the 14C-labeled D-galactose analog, but renal excretion was also pronounced. This was confirmed by in vivo scanning of the rat using the 18F-labeled sugar (1.5 microCi/g; 25 nmol/g) and examination by positron-emission tomography and gamma camera. The dose dependence of the levels of the hepatic metabolites of 2-deoxy-2-fluoro-D-galactose was investigated for doses between 25 nmol/g body mass and 1 mumols/g body mass. After 1 h, the major part of the acid-soluble uracil nucleotides consisted of UDP-2-deoxy-2-fluoro-D-hexoses when the dose was at least 0.1 mumols/g. With higher doses, 2-deoxy-2-fluoro-D-galactose 1-phosphate became the predominant initial metabolite. After a dose of 1 mumols/g 2-deoxy-2-fluoro-D-galactose 1-phosphate accumulated rapidly (5.3 +/- 0.4 mumols/g liver after 30 min) followed by the formation of UDP-2-deoxy-2-fluoro-D-galactose and UDP-2-deoxy-2-fluoro-D-glucose (0.7 +/- 0.1 mumols/g and 1.8 +/- 0.1 mumols/g, respectively, after 5 h). The diversion of uridylate, due to the accumulation of UDP-2-deoxy-2-fluoro-D-hexoses, was associated with a rapid depletion of hepatic UTP, UDP-glucose, and UDP-galactose. The UTP content was decreased to 11 +/- 6% of normal within 15 min after administration of 2-deoxy-2-fluoro-D-galactose at a dose of 1 mumols/g. The UTP-depleting action was minimal, however, at a dose of 25 nmols/g or less, indicating that interference in uridylate metabolism would be negligible at the doses required for positron-emission tomography of the liver using the 18F-labeled compound. At higher doses, the UTP deficiency induced by 2-deoxy-2-fluoro-D-galactose could be useful in the chemotherapy of D-galactose-metabolizing tumors such as hepatocellular carcinoma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A partially purified preparation of thymine 7-hydroxylase (thymine, 2-oxoglutarate : oxygen oxidoreductase (7-hydroxylating), EC 1.14.11.6) from Neurospora crassa was incubated with a number of pyrimidines chemically related to tyymine. 1. Pyrimidines with oxygen or sulfur substituents on atoms Nos. 2 and 4 as well as an alkyl group on atom Nos. 1 or 5 were substrates. 2. Km values were determined for 1-methyluracil, 1-ethyluracil, thymine, 6-azathymine, 1-methylthymine, 1-ethylthymine, 5-formyluracil and 5-hydroxymethyluracil. 3. Uracil was identified as one of the metabolites after incubation with 1-methyluracil. The one-carbon metabolite has not been characterized. 4. Several pyrimidines with polar groups on atoms Nos. 2 and 4 were inhibitory. 5. Addition of 1-methyluracil, 1-methylthymine, 1-ethylthymine or 5-hydroxymethyluracil to incubations with thymine and 2-oxo[1-14C1]glutarate did not result in additional formation of 14CO2, indicating that the same enzyme acts on the different compounds. It has previously been found (Bankel, L., Holme, E., Lindstedt, G. and Lindstedt, S. (1972) FEBS Lett. 21, 135-138) that a mutant strain of N. crassa which is devoid of thymine 7-hydroxylase activity also lacks ability to perform the coupled oxygenation of 2-oxoglutarate and 1-methyluracil, 5-hydroxymethyluracil and 5-formyluracil, respectively. It is concluded that one and the same oxygenase is responsible for the activities studied.  相似文献   

13.
O-α-d-Mannopyranosyl-(1→6)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-N-(l-aspart-4-oyl)-2-deoxy-β-d-glucopyranosylamine (12), used in the synthesis of glycopeptides and as a reference compound in the structure elucidation of glycoproteins, was synthesized via condensation of 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide with 2-acetamido-4-O-(2-acetamido-3-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide (5) to give the intermediate, trisaccharide azide 7. [Compound 5 was obtained from the known 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide by de-O-acetylation, condensation with benzaldehyde, acetylation, and removal of the benzylidene group.] The trisaccharide azide 6 was then acetylated, and the acetate reduced in the presence of Adams' catalyst. The resulting amine was condensed with 1-benzyl N-(benzyloxycarbonyl)-l-aspartate, and the O-acetyl, N-(benzyloxycarbonyl), and benzyl protective groups were removed, to give the title compound.  相似文献   

14.
Methyl 6-C-alkyl-6-deoxy-alpha-D-mannofuranoside derivatives have been synthesized from methyl 2,3-O-isopropylidene-5,6-O-sulfuryl-alpha-D-mannofuranoside (1). In a Path A, reaction of the 5,6-cyclic sulfate 1 with 2-lithio-1,3-dithiane afforded 2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane (2). Treatment of 2 with n-butyllithium then alkyl iodide gave the corresponding 2-(methyl 5-O-alkyl-6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl )-1,3- dithiane. Reaction of 2 with n-butyllithium and 5,6-cyclic sulfate 1 furnished 2-[methyl 6-deoxy-2,3-O-isopropylidene-5-O-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-manno-furanosid-6-yl)-alpha-D - mannofuranosid-6-yl]-1,3-dithiane. 2-(Methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid- 6-yl)-1,3-dithiane was converted into the lithiated anion, which after treatment with alkyl halide afforded the corresponding 2-alkyl-C-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-1,3- dithiane. In a Path B, 5,6-cyclic sulfate 1 reacted with 2-alkyl-2-lithio-1,3-dithiane derivatives, which led after acidic hydrolysis to 2-alkyl-2-(methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane accompanied by methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranos-5-u loside as the by-product. This methodology was applied to synthesize 2-(methyl 6-deoxy-2,3-O-isopropylidene-5-O-methyl-alpha-D-mannofuranosid-6-y l)-2- (methyl 6-deoxy-2,3-O-isopropylidene-alpha-D-mannofuranosid-6-yl)-1,3-dith iane.  相似文献   

15.
The synthesis of a series of (R)-3-[2-(2-amino)phenethyl]-1-(2,6-difluorobenzyl)-6-methyluracils containing a substituted thiophene or thiazole at C-5 is described. SAR around C-5 of the uracil led to the discovery that a 2-thienyl or (2-phenyl)thiazol-4-yl group is required for optimal receptor binding. The best compound from the series had a binding affinity of 2 nM (K(i)) for the human GnRH receptor. A novel and convenient preparation of N-1-(2,6-difluorobenzyl)-6-methyluracil is also described.  相似文献   

16.
Hydrogenation of 2'-deoxy-2'-difluoromethylene-5'-O-dimethoxytrityluridine (1) and 3'-deoxy-3'-difluoromethylene-5'-O-dimethoxytrityluridine (7), gave the corresponding 2'- and 3'-difluoromethyluridine derivatives 2a and 8a. Detritylation of compounds 2a, 2b and 8a, 8b resulted in the formation of 1-(2-deoxy-2-C-difluoromethyl-beta-D-arabino-pentofuranosyl)uracil (3a) and 1-(3-deoxy-3-C-difluoromethyl-beta-D-xylo-pento furanosyl)- uracil (9a) as well as corresponding minor isomers 3b and 9b. Compounds 3a and 3b were also obtained from 2'-deoxy-2'-difluoromethylene-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)uridine (4). Finally, phosphitylation of 2a and 8a provided the title 2'- and 3'-O-phosphoramidites 6 and 10.  相似文献   

17.
Addition of 2-amino-2-deoxy-β-D-glucopyranose to dimethyl acetylenedicarboxylate afforded an almost quantitative yield of amorphous 2-deoxy-2-(1,2-dimethoxycarbonylvinyl)amino-D-glucose (5). Acetylation of this adduct gave crystalline 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[(Z)-1,2-dimethoxycarbonylvinyl]amino-α-D-glucopyranose (6a); the corresponding β-D anomer (6b) was obtained by addition of 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-Dglucopyranose to dimethyl acetylenedicarboxylate. O-Deacetylation of tetra-acetate 6a with barium methoxide in methanol occurred selectively at C-1, yielding enamine 6c derived from 3,4,6-tri-O-acetyl-2-amino-2-deoxy-α-D-glucopyranose. Conversion of the crude adduct 5 into 3-methoxycarbonyl-5-(D-arabino-tetrahydroxybutyl)-2-pyrrolecarboxylic acid (7) took place by heating in water or in slightly basic media in yields up to 83%. Acetylation of 7 gave the tricyclic derivative 8, and its periodate oxidation afforded 5-formyl-3-methoxycarbonyl-2-pyrrolecarboxylic acid (9). Oxidation of 9 with alkaline silver oxide yielded 3-methoxy-carbonyl-2,5-pyrroledicarboxylic acid (10).  相似文献   

18.
Two new series of cannabinoids were prepared and their affinities for the CB1 and CB2 receptors were determined. These series are the (2'R)- and (2'S)-1-methoxy- and 1-deoxy-3-(2'-methylalkyl)-delta8-tetrahydrocannabinols, with alkyl side chains of three to seven carbon atoms. These compounds were prepared by a route that employed the enantioselective synthesis of the resorcinol precursors to the cannabinoid ring system. All of these compounds have greater affinity for the CB2 receptor than the CB1 receptor and four of them, (2'R)-1-methoxy-3-(2'-methylbutyl)-delta8-THC (JWH-359), (2'S)-1-deoxy-3-(2'-methylbutyl)-delta8-THC (JWH-352), (2'S)-1-deoxy-3-(2'-methylpentyl)-delta8-THC (JWH-255), and (2'R)-1-deoxy-3-(2'-methylpentyl)-delta8-THC (JWH-255), have good affinity (K(i) = 13-47 nM) for the CB2 receptor and little affinity (K(i) = 1493 to >10,000 nM) for the CB1 receptor. In the 1-deoxy-3-(2'-methylalkyl)-delta8-THC series, the 2'S-methyl compounds in general have greater affinity for the CB2 receptor than the corresponding 2'R isomers.  相似文献   

19.
Hydrazine treatment of uridine 5'-(2-acetamido-2-deoxy-α-D-glucopyranosyl pyrophosphate) for 1 h resulted in N-deacetylation and cleavage of the pyrophosphate bond to give 2-amino-2-deoxy-α-D-glucopyranosyl phosphate as the main compound. It was separated from other degradation products by paper electrophoresis and isolated in a yield of 50–60%.  相似文献   

20.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号