首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisome proliferation induced by 2 hypolipidemic agents (clofibrate and ciprofibrate) was studied in rats by complementary approaches, ie cell fractionation, electron microscopy, marker enzyme activities, immunoblotting and nucleic acid hybridization techniques. Administration of clofibrates for 2 and 52 weeks in doses of 500 ppm and 50 ppm respectively, or ciprofibrate for 2,28 and 52 weeks in doses of 250, 25 and 25 ppm respectively, did not alter the behavior of the peroxisomes after induction as shown by ultracentrifugation profiles. The peroxisome mass was increased as shown by the purification procedure. Specific enzymes (catalase and mostly cyanide insensitive palmitoyl CoA oxidase) were induced. A mechanism of peroxisome biogenesis might have been initiated ie cytosolic factor, ligand-receptor interaction and/or post-translational modification of the import. Increase in marker enzyme activities showed that the peroxisomes are the most responsive organelles in comparison to lysosomes, mitochondria and smooth endoplasmic reticulum (except for cytochrome P-450 LA omega-hydroxylase). Peroxisomal integral membrane proteins appeared to be differently induced: some of them were virtually absent in untreated rat liver but were strongly expressed in treated liver. Induction was sustained for 52 weeks, indicating that there was no compensatory mechanism.  相似文献   

2.
3.
Expressions of the c-Ha-ras and c-myc genes in rat liver tumors   总被引:5,自引:0,他引:5  
Expressions of the c-Ha-ras and c-myc genes were studied by Northern blotting of total RNA from primary tumors and non-tumorous parts of the liver of rats given diet containing 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) and from established rat hepatoma cell lines. The expression of the c-Ha-ras gene was found to be high in the primary tumors, non-tumorous parts of 3'-Me-DAB-treated livers and hepatoma cell lines. In contrast, the c-myc gene was expressed at a high level only in primary tumors and hepatoma cell lines. During 3'-Me-DAB treatment, the c-Ha-ras mRNA level in the liver increased by day 5 and then remained high. Increase in expression of the c-Ha-ras gene in regenerating liver was confirmed. These findings suggest that increase in expression of the c-Ha-ras gene is related to proliferation of hepatocytes, whereas expression of the c-myc gene is associated with hepatocarcinogenesis.  相似文献   

4.
The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine acetyltransferase and [total carnitine] in liver are closely related.  相似文献   

5.
Since oxygen free radicals are believed to play an important role in cartilage degradation, we studied the effects of these radicals generated by the hypoxanthine xanthine oxidase system on rabbit articular chondrocytes in culture. Among the damages induced by these radicals, cell proliferation inhibition and G2 arrest were observed. To elucidate the mechanisms involved in this phenomenon, the expression of c-myc and c-Ha-ras genes whose products are associated with cell growth control was studied. Results showed that in chondrocytes, c-myc and c-Ha-ras expression was particularly important during the G1 phase of the cell cycle and that oxygen reactive species, especially H2O2, induced an important decrease of c-myc and c-Ha-ras mRNA levels. Chondrocytes cell cycle analysis revealed an accumulation of cells in G2 phase. It led us to suggest that the chondrocyte cell cycle perturbations observed after oxygen free radicals treatment could be associated with the decrease of c-myc and c-Ha-ras expression.  相似文献   

6.
Catalase activity and peroxisomal and mitochondrial palmitate oxidation have been investigated in cardiac and skeletal muscle from rats fed clofibrate, ciprofibrate or nafenopin in an unrefined diet for different periods of time. Nafenopin was also added to either a high carbohydrate (70% of kilocalories from glucose) or high fat (70% of kilocalories from lard) diet and fed to rats for either 1 or 3 weeks. Catalase activity was elevated in all muscles from rats fed the hypolipidemic drugs. The response of catalase activity in muscle to clofibrate was dose-dependent. The response time of catalase activity was different in individual muscles. Peroxisomal palmitate oxidation was elevated in the heart and soleus muscle from rats fed nafenopin in either the high-carbohydrate or the high-fat diet. There was no change in peroxisomal palmitate oxidation in psoas or extensor digitorum longus muscle from rats fed the drugs. Mitochondrial palmitate oxidation was only slightly increased by nafenopin in the heart and soleus muscles after 3 weeks of nafenopin feeding. The results suggest that the cardiac muscle, like the liver, responds to hypolipidemic drug treatment with an increase in peroxisomal fat oxidation. The skeletal muscle response is less specific and that tissue may not contribute to the hypolipidemic effect of the drugs. The findings also suggest that these drugs do not induce peroxisome proliferation in skeletal muscle.  相似文献   

7.
Acute and chronic treatment with clofibrate increased the total CoA content of rat liver and altered the profile of the various CoA thioesters. There resulted a 2–3 fold increase in the contents of long chain acyl CoA, acetyl CoA and free CoA, contrasting with significant decreases found in succinyl CoA, malonyl CoA and acetoacetyl CoA contents. It is postulated that the known increase in fatty acid binding protein and/or the increased extramitochondrial β-oxidation of fat by an increased peroxisomal population may direct the compartmentation and metabolic fate of fatty acids and their CoA derivatives following clofibrate treatment.  相似文献   

8.
The peroxisomal compartment in mouse liver was investigated using rate sedimentation of liver subfractions on sucrose density gradients. Treatment of mice with clofibrate, a hypolipidemic agent and peroxisome proliferator, resulted in the formation of small particles which were devoid of catalase and urate oxidase, but which were identified as peroxisomal on the basis of content of the clofibrate-induced peroxisomal beta-oxidation enzymes (fatty acyl-CoA oxidase, hydratase/dehydrogenase bifunctional protein, and thiolase) and the 68 kDa peroxisomal integral membrane protein. Immunoelectron microscopy confirmed the membrane-bound organellar nature and enzyme composition of these particles. These particles were absent in normal mice, and were increased to a maximal level within 2 days of clofibrate treatment. These data have been taken as indicative of a role of these particles in the mechanism of drug-induced peroxisome proliferation.  相似文献   

9.
This study investigated the effect of clofibrate treatment on expression of target genes of peroxisome proliferator-activated receptor (PPAR)-alpha and various genes of the lipid metabolism in liver and adipose tissue of pigs. An experiment with 18 pigs was performed in which pigs were fed either a control diet or the same diet supplemented with 5 g clofibrate/kg for 28 days. Pigs treated with clofibrate had heavier livers, moderately increased mRNA concentrations of various PPAR-alpha target genes in liver and adipose tissue, a higher concentration of 3-hydroxybutyrate, and markedly lower concentrations of triglycerides and cholesterol in plasma and lipoproteins than control pigs (P < 0.05). mRNA concentrations of sterol regulatory element-binding proteins (SREBP)-1 and -2, insulin-induced genes (Insig)-1 and Insig-2, and the SREBP target genes acetyl-CoA carboxylase, 3-methyl-3-hydroxyglutaryl-CoA reductase, and low-density lipoprotein receptor in liver and adipose tissue and mRNA concentrations of apolipoproteins A-I, A-II, and C-III in the liver were not different between both groups of pigs. In conclusion, this study shows that clofibrate treatment activates PPAR-alpha in liver and adipose tissue and has a strong hypotriglyceridemic and hypocholesterolemic effect in pigs. The finding that mRNA concentrations of some proteins responsible for the hypolipidemic action of fibrates in humans were not altered suggests that there were certain differences in the mode of action compared with humans. It is also shown that PPAR-alpha activation by clofibrate does not affect hepatic expression of SREBP target genes involved in synthesis of triglycerides and cholesterol homeostasis in liver and adipose tissue of pigs.  相似文献   

10.
11.
The induction of liver cytochrome P450 4A-catalyzed fatty acid omega-hydroxylase activity by clofibrate and other peroxisome proliferators has been proposed to be causally linked to the ensuing proliferation of peroxisomes in rat liver. Since female rats are less responsive than males to peroxisome proliferation induced by clofibrate, the influence of gender and hormonal status on the basal and clofibrate-inducible expression of the 4A P450s was examined. Northern blot analysis using gene-specific oligonucleotide probes revealed that in the liver, P450 4A1 and 4A3 mRNAs are induced to a much greater extent in male as compared to female rats following clofibrate treatment, whereas P450 4A2 mRNA is altogether absent from female rat liver. Male-specific expression of P450 4A2 mRNA was also observed in kidney. Western blot analysis indicated that a similar sex dependence characterizes both the basal expression and the clofibrate inducibility of the corresponding P450 4A proteins. This suggests that the lower responsiveness of female rats to clofibrate-induced peroxisome proliferation may reflect the lower inducibility of the P450 4A fatty acid hydroxylase enzymes in this sex. Investigation of the contribution of pituitary-dependent hormones to the male-specific expression of 4A2 revealed that this P450 mRNA is fully suppressed in liver following exposure to the continuous plasma growth hormone profile that characterizes adult female rats; in this and other regards liver P450 4A2 is regulated in a manner that is similar, but not identical to, P450 3A2, a male-specific testosterone 6 beta-hydroxylase. In contrast, kidney 4A2 expression, although also male-specific, was not suppressed by continuous growth hormone treatment, but was regulated by pathways that, in part, involve testosterone as a positive regulator. The male-specific expression of liver and kidney P450 4A2 is thus under the control of distinct pituitary-dependent hormones acting in a tissue-specific manner.  相似文献   

12.
13.
The effects of treatment of rats with clofibrate, bezafibrate, and ciprofibrate on the hepatic metabolism of cholesterol were studied in rat liver microsomes. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity, regulating cholesterol biosynthesis, was unaffected by clofibrate and ciprofibrate and slightly decreased (20%) by bezafibrate. Also cholesterol 7 alpha-hydroxylase activity, governing bile acid biosynthesis, was unaffected by clofibrate and was reduced by 25-30% in the two other groups of rats. A major new finding was that all three fibric acid derivatives reduced ACAT (acyl-coenzyme A:cholesterol acyltransferase) activity, catalyzing the esterification of cholesterol, by 50-70%. The hepatic content of free and esterified cholesterol was determined in the bezafibrate-treated rats. The concentration of microsomal cholesteryl ester was about 60% lower in the treated rats compared to the controls whereas the concentration of total cholesterol was unchanged.  相似文献   

14.
We administered the hypolipidemic drug ciprofibrate to lactating rats and examined the enzymatic content and ultrastructural features of liver and kidney peroxisomes, both in treated animals and in their pups. The peroxisomal morphometric parameters, in particular, were measured in specimens submitted to the cytochemical reaction for the marker enzyme catalase. In liver of treated rats, the activities of peroxisomal enzymes involved in the fatty acid catabolism were significantly increased, while D-amino acid oxidase activity was lower than in controls; increments were also found in relative volume and pleiomorphism degree of the peroxisomal compartment, where a catalase dilution was supposed to occur. In the kidney, the treatment induced generalized increases of all examined enzymes; values significantly higher than controls were found in peroxisomal relative volume and numerical density, while the peroxisomal mean diameter practically did not change. The two organs, moreover, were affected by the drug in an age-dependent way, the pups being more responsive than the adults. The organ- and age-specific responses to the drug are interpreted as possibly related to the tissue-specific distribution of the peroxisomal proliferator activated receptor isotypes.  相似文献   

15.
Peroxisome proliferators, and especially hypolipidemic drugs such as ciprofibrate, are known to be hepatocarcinogens in rodents, but their effect in humans is controversial. In an attempt to investigate the effects of ciprofibrate at a cellular level, the analysis of individual whole cells was performed by flow cytometry on samples from two hepatic-derived cell lines: the rat Fao cell line and the human HepG2 cell line. The increase of light scatter signals in rat Fao cells treated for 3 days with ciprofibrate at 250 μMwas related to modifications of intrinsic cellular parameters, such as size and cytoplasmic granularity. Conversely, no variations appeared in human HepG2-treated cells. Moreover, the study of the cell cycle distribution of asynchronously growing cells showed an increase in the percentage of proliferative cells in Fao-treated cells, but not in HepG2-treated cells. In order to give a simultaneous assessment of changes in cellular parameters and cell metabolism, these flow cytometric experiments were completed with the measurements of the palmitoyl–CoA oxidase activity, used as a marker of peroxisome proliferation. The cellular modifications in the rat Fao cell line were accompanied by a great increase in this enzymatic activity, whereas the human HepG2 cell line, which failed to exhibit changes of cytometric data, presented no, or weak, increase in this oxidase activity. The cellular modifications observed in the rat Fao cell line may be related to the well-known hepatocarcinogenicity of ciprofibrate in rodents, whereas the absence of response of HepG2 cells is in favor of the noncarcinogenicity of this drug in humans. This report validates another methodological approach for the investigation of the safety of peroxisome proliferators in humans.  相似文献   

16.
Administration of glycine (2.5 mmoles/100 g., i.p.) results in an increased expression of several cell cycle dependent genes such as c-fos, c-myc and c-Ha-ras in the rat liver. The increased expression could be noticed as early as 20-40 minutes and declined by 2 hours following glycine administration. The rapid rise and decline in the mRNA levels of c-fos, c-myc and c-Ha-ras in response to glycine is of significance because in response to a wide variety of growth stimuli, these proto-oncogenes exhibit a temporal sequence in their expression; for example, the expression of c-fos precedes that of c-myc, which in turn precedes the increased expression of c-Ha-ras. The experimental model using a simple amino acid such as glycine will be useful in exploring some of the mechanisms of regulation of expression of these proto-oncogenes.  相似文献   

17.
A cyanide insensitive fatty acid oxidation system is detected in human liver and is shown to be localized in peroxisomes by subcellular fractionation in Metrizamide continuous density gradients. Fatty acyl-CoA oxidase, its characteristic enzyme, acts maximally on C12–C18 saturated fatty acids and on oleoyl-CoA and requires FAD. These results, together with the already established properties of the system in rat liver, support its potential contribution to lipid metabolism and to the hypolipidemic effect of Clofibrate and related drugs in humans.  相似文献   

18.
On subcellular fractionation, the enzyme acyl/alkyl dihydroxyacetone phosphate (DHAP) reductase (EC 1.1.1.101) in guinea pig and rat liver was found to be present in both the light mitochondrial (L) and microsomal fractions. By using metrizamide density gradient centrifugation, it was shown that the alkyl DHAP reductase activity in the "L" fraction is localized mainly in peroxisomes. From the distribution of the marker enzymes it was calculated that about two-thirds of the liver reductase activity is in the peroxisomes and the rest in the microsomes. The properties of this enzyme in peroxisomes and microsomes are similar with respect to heat inactivation, pH optima, sensitivity to trypsin, and inhibition by NADP+ and acyl CoA. The enzyme activity in the peroxisomes and microsomes from mouse liver is increased to the same extent by chronically feeding the animals clofibrate, a hypolipidemic drug. The kinetic properties of this enzyme in these two different organelles are also similar. From these results it is concluded that the same enzyme is present in two different subcellular compartments of liver.  相似文献   

19.
The existence of a relationship between clofibrate-induced peroxisome proliferation and oxidative stress mediated by activated oxygen species was studied in intact peroxisomes purified from Pisum sativum L. plants. Incubation of leaves with 1 mM clofibrate produced a remarkable increase in the peroxisomal activity of acyl-CoA oxidase and, to a lesser extent, of xanthine oxidase, whereas there was a nearly complete loss of catalase activity and a decrease in Mn-superoxide dismutase. Ultrastructural studies of intact leaves showed that clofibrate induced a five- and twofold proliferation of the peroxisomal and mitochondrial populations, respectively, in comparison with those in control leaves. Prolonged incubation with clofibrate produced considerable alterations in the ultrastructure of cells. In peroxisomal membranes, the NADH-induced generation of O2- radicals, as well as the lipid peroxidation of membranes, increased as a result of treatment of plants with clofibrate. In intact peroxisomes treated with this hypolipidemic drug, the H2O2 concentration was higher than in peroxisomes from control plants. These results demonstrate that clofibrate stimulates the production of activated oxygen species (O2- and H2O2) inside peroxisomes, as well as the lipid peroxidation of peroxisomal membranes. This effect is concomitant with a decrease of catalase and Mn-SOD activities, the main peroxisomal enzymatic defenses against H2O2 and O2-, and indicates that in the toxicity of clofibrate, at the level of peroxisomes, an oxidative stress mechanism mediated by activated oxygen species is involved.  相似文献   

20.
Using density gradient fractionation palmityl-CoA oxidase was localised in the peroxisomes of kidney and small intestine of albino mice. Dietary clofibrate treatment for 14 days resulted in significant increases in palmityl-CoA oxidase of kidney and small intestine of albino mice and liver of genetically lean and obese mice, and was accompanied in the latter by a proliferation of hepatic peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号