首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of an extracellular collagenase and an alkaline protease by Vibrio alginolyticus during stationary phase was inhibited by a temperature shift from 30 to 37°C and by a lack of oxygen. The stability of the exoproteases was unaffected by incubation at 37°C and aeration. The optimum growth temperature for the V. alginolyticus strain was 33.5°C Aeration enhanced the rate of growth of exponential phase cells. Temperature and oxygen did not affect the growth of stationary phase cells when the exoproteases were being produced. Macromolecular synthesis in stationary phase cells was not affected by temperature. There was no rapid release of the exoproteases after temperature shift down and chloramphenicol inhibited the production of the enzymes when added at time of temperature shift down from 37 to 30°C. The regulation of exoprotease production by temperature and oxygen was specific and has implications regarding the ecology of V. alginolyticus. Cerulenin, quinacrine and O-phenanthroline inhibited the production of the exoproteases.  相似文献   

2.
Growth of phase alpha 3a on stationary phase Vibrio cultures requires micro-aerophilic conditions and is inhibited by aeration. Since pre-conditioning of the bacteria by allowing them to stand for 24 h after shaking for 3 d is an important aspect of the stationary phase phage growth system, various physiological and morphological characteristics of the stationary phase cells during the transition from shaking to standing were investigated. Shaken stationary phase cells were less viable and more sensitive to ultraviolet irradiation and heat than standing stationary phase cells. During pre-conditioning the small, non-flagellated cells present in shaken stationary phase cultures underwent morphological changes and became large, flagellated rods which resembled exponential phase cells. The transition of stationary phase cells from shaking to standing was associated with a marked increase in total RNA synthesis but a rapid and large decrease in total protein synthesis. Intracellular concentrations of ATP in shaken stationary phase cells were 53% lower than those in standing stationary phase cells. Studies on leucine uptake indicated that its transport was inhibited by isoleucine and that the major part (90%) of the total leucine uptake was due to a shared system for uptake of both amino acids. Shaken stationary phase cells transported less leucine than standing stationary phase cells. Inhibition of phage growth in aerated stationary phase cultures was not due to the prevention of phase absorption by shaking. It is suggested that the observed differences between shaken and standing stationary phase cells could be due to aeration affecting the template specificity of the Vibrio RNA polymerase.  相似文献   

3.
The effect of some amino acids, added to the medium either during inoculation or in the stationary growth phase, on the growth and biosynthesis of ergot alkaloids and quinocitrinins in the fungus Penicillium citrinum VKM FW-800 has been studied. Exogenously added amino acids were mostly utilized in primary metabolism. When added during inoculation, tryptophan and leucine virtually did not influence fungal growth and synthesis of the alkaloids, whereas the addition of isoleucine enhanced the biomass accumulation. When added in the stationary growth phase, tryptophan stimulated the synthesis of both ergot alkaloids and quinocitrinins. Leucine added in the stationary growth phase did not influence the synthesis of ergot alkaloids but inhibited the synthesis of quinocitrinins. Isoleucine inhibited the synthesis of both ergot alkaloids and quinocitrinins irrespective of the time of its addition to the medium.  相似文献   

4.
Association of extracellular protein product with flocculated cells reduces product yield. Here, partitioning of the enzyme subtilisin between the liquid and polyelectrolyte-flocculated and sedimented Bacillus increased as the polymer dosage was increased beyond that necessary to obtain optimum floc character (brain floc) for cell removal by centrifugation. Partitioning to the cell floc is partly physical entrapment at all polymer dosages; however, at higher levels there is also direct interaction between the polyelectrolyte and enzyme. Enzyme loss was not likely due to pH denaturation during the flocculation process because conditions were within the stable pH range of the enzyme. The direct interaction between polyelectrolyte and enzyme was characterized through turbidimetric titrations and partitioning studies. Neither changes in the polymer feed concentration nor the method of polymer addition reduced the enzyme loss at dosages optimal for cell removal.  相似文献   

5.
When grown and induced to form germ tubes in liquid defined media, yeast cells of Candida albicans must reach stationary phase before acquiring ability to carry out the yeast-mycelial transition. This study examined the effect of the carbon source utilized for yeast growth on the inducibility of stationary phase yeast. When grown to the same stationary phase cell density as glucose cultures, cultures grown on citrate were fully inducible while cultures grown on galactose and mannose showed a small reduction. Cultures grown on ethanol were reduced 80% in morphological conversion. When glucose grown cells were induced in the presence of these carbon sources, hexoses supported full induction while ethanol reduced induction 80%. Induction in the presence of carboxylic acids was similar to induction in the absence of added carbon source. When induced on the same source used in yeast growth, germ tube formation was reduced for all carbon sources except hexoses. When induced in the absence of added carbon source, yeasts grown on citrate and ethanol were inhibited 80-100%. Cultures starved for glucose were more inhibited than cultures starved for NH4Cl when induced without added carbon source. These observations suggest that the metabolic state of the stationary phase cell is an important factor in the ability to respond to conditions inducing germ tube formation.  相似文献   

6.
Six strains of floc-forming bacteria belonging to Flavobacterium were isolated from activated sludge which were deflocculated by Pronase treatment. The flocculated cells of the strain B, one of the isolates, was deflocculated not only by Pronase, but also by ethylenediaminetetraacetate. Growth was stimulated when Pronase was added in the medium. An adequate amount of calcium ion in the medium was required for flocculation. No flocculation was observed, however, when calcium was added to the cells grown with a low level of calcium. Deflocculation was observed at the late stationary phase and the onset of deflocculation depended on the concentrations of calcium in the medium. The higher concentrations delayed the deflocculation. The floes formed in the presence of calcium over 0.5 nm in the medium became resistant to the Pronase treatment.  相似文献   

7.
Abstract Both nitrapyrin and 6-chloropicolinic acid inhibited nitrite production when added to stationary-phase and exponentially growing cells of Nitrosomonas europaea at a concentration of 2.17 μM. Nitrapyrin inhibited growth immediately, but there was a lag before inhibition by chloropicolinic acid added to growing cells, and induction of a lag phase when this was added to stationary phase cells. There was no effect on the subsequent specific oxidation rate.  相似文献   

8.
Homothallic cultures of Schizosaccharomyces pombe, anaerobically grown to stationary phase in broth at 32°C, were induced by aeration to flocculate. Flocculation was followed by copulation, conjugation, zygote formation, meiosis and sporulation. Cultures grown to stationary phase at 32°C and then aerated at 37°C did not sporulate. Grown to stationary phase at 37°C, cultures were not immediately inducible when aerated at 32°C. To identify which events in the developmental sequence were thermosensitive, we grew and induced cultures at 32°C and then shifted them at various times to 37°C. We observed the following events to be thermosensitive: development of respiratory sufficiency, readiness (inducibility of a culture within 1 h), flocculation induction, copulation, conjugation and early sporulation (including meiosis). Respiration, flocculation and spore maturation were thermoresistant. Conjugation-induced lysis and post-developmental deflocculation were enhanced at 37°C.NRCC no. 17775  相似文献   

9.
We have evaluated the induction of the flocculent phenotype of Kloeckera apiculata by glucose mc1 and propose a pathway involved in carbohydrate flocculation induction. Pulses of glucose were given to cells growing in glucose-poor medium (2 g l(-1)) and the flocculation percentage was measured. To elucidate the mechanism involved in flocculation induction, cycloheximide was injected into the cultures 120 min before the glucose pulse. 2,4-Dinitrophenol or cAMP was added to the media instead, or simultaneously with glucose, while a protein kinase A (PKA) inhibitor was added 30 min before the glucose pulse. With 20 and 50 g l(-1) glucose pulse, the yeast flocculation percentage arises to 55 and 65%, respectively. The quantity of proteins and the reflocculating capacity of a lectinic protein extract from the yeast cell wall increase as the concentration of glucose pulse was higher. Cycloheximide prevented the glucose-induced flocculation, while cAMP or 2,4-dinitrophenol increased it 4- and 5-fold, respectively. PKA inhibitor completely prevented the glucose induction flocculation. The flocculent phenotype of K. apiculata mc1 was induced by glucose and the mechanism seems to imply de novo protein (lectin) synthesis via the PKA transduction pathway. This work contributes to the elucidation of the mechanism involved in flocculation induction by glucose of a non-Saccharomyces wine yeast, K. apiculata, which has not been reported. The induction of flocculation by glucose could be a biotechnological tool for the early removal of the indigenous microorganisms from the grape must before the inoculation of a selected starter strain to conduct the alcohol fermentation.  相似文献   

10.
Numerous nucleoli can be observed in the macronucleus of the logarithmically growing ciliated protozoan Tetrahymena pyriformis; at late log phase the nucleoli aggregate and fuse. In stationary phase this fusion process continues, leaving a very few large vacuolated nuclear fusion bodies in the nucleus. When these stationary phase cells are placed into fresh enriched proteose peptone medium, the large fusion bodies begin to disaggregate during the 2.5-hour lag phase before cell division is initiated. By 3 to 6 hours after inoculation the appearance of the nucleoli in many cells returns to what it was in logarithmic cells. In view of the possible role of nucleoli in ribosome synthesis, attempts were made to correlate the morphological changes to changes in RNA and protein metabolism. The beginning of an increased RNA synthesis was concomitant with the beginning of disaggregation of the large fusion bodies into nucleoli, which was noticed in some cells by 1 hour after the return to fresh enriched proteose peptone medium. Increased protein synthesis then followed the increased RNA synthesis by 1 hour. The supply of RNA precursors (essential pyrimidines) were removed from cultures which were grown on a chemically defined synthetic medium, in order to study the relation between nucleolar fusion and synthesis of RNA and protein. Pyrimidine deprivation drastically curtailed RNA and protein synthesis, but did not cause fusion of nucleoli. When pyrimidines were added back to this culture medium, RNA synthesis was immediately stimulated and again preceded an increased protein synthesis by 1 hour. These studies suggest the involvement of unfused nucleoli in RNA and protein synthesis and demonstrate the extreme plasticity of nucleoli with respect to changes in their environment.  相似文献   

11.
Characterization of flocculation for cell removal from fermentation broth via polyelectrolyte addition is commonly based on qualitative methods such as physical appearance of the floc. The use of zeta potential as a quantitative measure of floc character was evaluated as an indicator of optimal polymer addition. Zeta potential was found to increase with increasing cationic polyelectrolyte dosage, but never reached zero regardless of the total amount of polymer added, indicating flocculation occurs at least partially through a bridging type mechanism. Experiments were conducted using various polymer concentrations (25-75 g/L) and dosing methods (batch, incremental and continuous addition) that resulted in variable overall polymer requirements to achieve optimum flocculation. Zeta potential was found to be constant at optimal floc character regardless of the total amount of polymer added, polymer concentration, or method of polymer addition. Experiments with two additional types of fermentation broth also showed characteristic zeta potentials at optimal flocculation. Polymer requirements to achieve a particular floc character can vary greatly, depending on polymer dosing conditions and fermentation batch. The effect of polymer dosing conditions on the polymer requirement to obtain optimal floc character was evaluated. Polymer dosing method and calcium concentration were both found to have a significant effect (P < 0.0001) with continuous polymer addition and high calcium concentration requiring less polymer than did batch polymer addition and low calcium concentration, respectively. Polymer dosing concentration did not significantly affect polymer requirement for optimal flocculation.  相似文献   

12.
Prolyl 4-hydroxylase (EC 1.14.11.2) is a key enzyme in collagen biosynthesis, its active form is a tetramer (alpha 2 beta 2). In L-929 fibroblasts in the log phase of culture there is a low level of active enzyme. When the cell culture reaches confluency, prolyl hydroxylase activity in cells increases by a process that requires de novo RNA and protein synthesis. The same result may be achieved by crowding the cells (replating log phase cells at the density of stationary phase cells). In the work reported here we further examined induction of the enzyme. RNA synthesis necessary for enzyme induction is complete 6 h after "crowding" while protein synthesis requires 12 h. Thymidine (0.2-0.5 mM) added to log phase cells will also cause enzyme induction to the level found in "crowded" or resting cells. We also looked at the decay of the enzyme activity after subculture. This occurs rapidly (enzyme half-life is 1-2 h) and is concurrent with the re-entry of resting cells into cell cycle; however, thymidine added at the time of subculture to block DNA synthesis does not prevent the loss of prolyl hydroxylase activity. These results suggest that when cells are not engaged in propagation, they begin to synthesize luxury proteins such as prolyl hydroxylase. However, the loss of prolyl hydroxylase during subculture is probably not a direct consequence of DNA synthesis.  相似文献   

13.
The flocculation of two brewing yeast strains, top-fermenting strain Saccharomyces cerevisiae MUCL 38485 and bottom-fermenting strain Saccharomyces carlsbergensis MUCL 28285, has been investigated by means of a turbidimetric test. The two strains showed different electrical properties, a different hydrophobicity, and a different surface chemical composition. They flocculated according to completely different mechanisms; however, no correlation between the cell physicochemical properties and the onset of flocculation was found for either strain. Flocculation of the bottom strain was governed by a lectin-mediated mechanism. It was inhibited by mannose and some other sugars, required calcium specifically, occurred in a narrow pH range different from the isoelectric point, and was not influenced by ethanol. The onset of flocculation at the end of the exponential phase was controlled both by the appearance of "active" lectins at the cell surface and by the decrease in sugar concentration in the solution. Flocculation of the top strain was not inhibited by mannose, did not require the addition of calcium, and took place at the cell isoelectric point. Low concentrations of ethanol broadened the pH range in which the cells flocculated, and flocculation was favored by an increase of ionic strength. Adsorbed ethanol may induce flocculation by reducing the electrostatic repulsion between cells, by decreasing steric stabilization, and/or by allowing the protrusion of polymer chains into the liquid phase. The onset of flocculation was controlled by both a change of the cell surface and an increase in ethanol concentration. The only evidence for an adhesin-mediated mechanism was the specific requirement for a small amount of calcium.  相似文献   

14.
The effect of some amino acids, added to the medium either during inoculation or in the stationary growth phase, on the growth and biosynthesis of ergot alkaloids and quinocitrinins in the fungus Penicillium citrinum VKM FW-800 has been studied. Exogenously added amino acids were mostly utilized in primary metabolism. When added during inoculation, tryptophan and leucine virtually did not influence fungal growth and synthesis of the alkaloids, whereas the addition of isoleucine enhanced the biomass accumulation. When added in the stationary growth phase, tryptophan stimulated the synthesis of both ergot alkaloids and quinocitrinins. Leucine added in the stationary growth phase did not influence the synthesis of ergot alkaloids but inhibited the synthesis of quinocitrinins. Isoleucine inhibited the synthesis of both ergot alkaloids and quinocitrinins irrespective of the time of its addition to the medium.  相似文献   

15.
The predominant bacterium of activated sludge classified as belonging to the genus Flavobacterium showed good flocculent growth in the presence of both calcium and magnesium ions, although capsular material or gelatinous matrix was not detectable in the flocs. The bacterium accumulated a large amount of poly-β-hydroxybutyrate when grown on glucose, but not on peptone, in spite of good flocculent growth on both substrates. When the flocs formed during growth phase were suspended in deionized water and shaken for a few minutes, they disintegrated perfectly, and a uniformly dispersed cell suspension was obtained. Furthermore, when the dispersed cell suspension thus obtained was added with each of various mineral salts and shaken for a few minutes, the cells flocculated again, the resultant supernatant solution being almost clear. Even if the dispersed cells were killed by heat or treated by trypsin, they did not lose the ability to form flocs when added with mineral salts. Since the electric charge of the cell surface was negative, a possible mechanism of floc formation was suggested as follows: negatively charged surfaces of adjacent cells are bridged by ionic bonds intermediated by cations. The bacterium utilized a relatively wide variety of organic compounds and showed high metabolic activity comparable to that of naturally activated sludge. These properties, along with floc-forming ability, were considered to be factors for making the bacterium predominant in activated sludge.  相似文献   

16.
The elevation of Hsp104 (heat shock protein) content under heat stress plays a key role in the development of thermotolerance in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress and in the stationary growth phase. The loss of mitochondrial DNA (petite mutation) was shown to inhibit the induction of Hsp104 synthesis under heat stress (39°C) and during the transition to the stationary growth phase. Also, the petite mutation suppressed the increase in activity of antioxidant enzymes in the stationary phase, which accompanied by decrease in thermotolerance. At the same time, mutation inhibited production of reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression of yeast nuclear genes upon upon entry into the stationary growth phase.  相似文献   

17.
Phosphate starvatiion induced teichuronic acid synthesis in cells of Bacillus subtilis 168trp? which had previously been grown with excess phophate. This induction was prevented when protein synthesis was inhibited immediately prior to phosphate starvation and under these conditions cells continued to form teichoic acid. The converse was true when phosphate was added to cells previously grown in phosphate-limited chemostat. The increase in teichoic acid synthesis normally following phosphate addition was prevented by chlorampehnicol or amino acid starvation and cells continued to make teichuronic acid. The suggestion that repression of enzyme synthesis is involved in controlling the type of wall polymer made was supported by the low levels of UDP-glucose dehydrogenase found in cells grown with excess phosphate and of CDP-glycerol pyrophosphorylase in phophate-limited cells. The greater amounts of teichoic acid made under phosphate limitation and of teichuronic acid with excess phosphate when protein synthesis was also inhibited indicated that modulation of enzyme activity occurs. Glycerol starvation of a glycerol-requiring mutant did not derepress teichuronic acid synthesis, indicating that glycerol-containing intermediates do not act as repressors.  相似文献   

18.
Chicken embryo fibroblast (CEF) cultures, synchronized by the addition of serum to stationary cells, were exposed to Schmidt-Ruppin strain of Rous Sarcoma Virus (SR-RSV) and the appearance of pp60v-src protein kinase activity was examined through the cell cycle. In cells infected either at the beginning or at the end of G1, the onset of pp60v-src protein kinase activity was coincidental, closely following mitosis, with a delay between the infection of cells with SR-RSV and the appearance of protein kinase activity of about 20 and 16 h, respectively. In cells infected during the S phase this delay was 16 h, as observed for late G1 cells. These experiments show that the activity of pp60v-src protein kinase, which cannot be detected before the first mitosis following infection does not depend on G1. The aphidicolin prevented protein kinase activity if added before or at the beginning of S phase, but not if added later, which is presumably related to the inhibition of S phase, required for provirus integration. The use of colcemid, which suppresses cell division, did not inhibit but delayed the appearance of protein kinase activity. These results show that the synthesis of an active oncogene product, such as pp60v-src protein kinase, depends on both S phase and mitosis.  相似文献   

19.
20.
An asporogenous strain of Bacillus licheniformis accumulated maltose by an energy dependent transport mechanism during an extended stationary phase. Maltose transport was sensitive to the effects of the uncoupler tetrachlorosalicylanide (TCS), and was also inhibited by glucose. Maltose stimulated synthesis of a p -nitrophenyl-α- D -glucoside-hydrolysing enzyme ( p NPGase) in log phase and in stationary phase cells. In the presence of glucose this induction was inhibited. Glucose was used preferentially to maltose in stationary phase cells. The uptake of maltose from the medium, and the synthesis of p NPGase, were immediately and completely inhibited in the presence of glucose. These results are consistent with a mechanism of inducer exclusion mediating the repressive effect of glucose upon p NPGase synthesis in stationary phase cells. Catabolite repression of α-amylase synthesis by glucose was also demonstrated in late stationary phase mutant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号