首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Wu CH  Chan JY  Chan SH  Chang AY 《PloS one》2011,6(11):e27404

Background

Brain stem cardiovascular regulatory dysfunction during brain death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain death ensues. Furthermore, the ubiquitin-proteasome system (UPS) may be involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain death by engaging in both synthesis and degradation of NOS II in RVLM.

Methodology/Principal Findings

In a clinically relevant experimental model of brain death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1) potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-κB or binding between NF-κB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated IκB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-κB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated.

Conclusions/Significance

We conclude that UPS participates in the defunct and maintained brain stem cardiovascular regulation during experimental brain death by engaging in both synthesis and degradation of NOS II at RVLM. Our results provide information on new therapeutic initiatives against this fatal eventuality.  相似文献   

13.
H.R. Wexler 《CMAJ》1983,129(6):649-650
  相似文献   

14.
15.
16.
17.
认识脑死亡   总被引:5,自引:0,他引:5  
赵瑛 《生物学通报》2005,40(6):17-18
死亡标准的争议由来已久。被称为“全脑功能不可逆性丧失”的“脑死亡”,能否替代传统的“心死亡”,它涉及医学、法学和伦理学等诸多领域。主张“脑死亡就是死亡”者认为这有利于及时终止安慰性抢救病人带来的医药资源的浪费,以及病人家属经济上、精神上的负担。也有利于及早提供移植器官以拯救无数可以生还的病人的生命。对脑死亡的诊断标准各国意见不同,至今尚无统一标准,但已有不少补充。  相似文献   

18.
19.
The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or “pilots”, to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号