首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial degradation of organophosphorus compounds   总被引:29,自引:0,他引:29  
Synthetic organophosphorus compounds are used as pesticides, plasticizers, air fuel ingredients and chemical warfare agents. Organophosphorus compounds are the most widely used insecticides, accounting for an estimated 34% of world-wide insecticide sales. Contamination of soil from pesticides as a result of their bulk handling at the farmyard or following application in the field or accidental release may lead occasionally to contamination of surface and ground water. Several reports suggest that a wide range of water and terrestrial ecosystems may be contaminated with organophosphorus compounds. These compounds possess high mammalian toxicity and it is therefore essential to remove them from the environments. In addition, about 200,000 metric tons of nerve (chemical warfare) agents have to be destroyed world-wide under Chemical Weapons Convention (1993). Bioremediation can offer an efficient and cheap option for decontamination of polluted ecosystems and destruction of nerve agents. The first micro-organism that could degrade organophosphorus compounds was isolated in 1973 and identified as Flavobacterium sp. Since then several bacterial and a few fungal species have been isolated which can degrade a wide range of organophosphorus compounds in liquid cultures and soil systems. The biochemistry of organophosphorus compound degradation by most of the bacteria seems to be identical, in which a structurally similar enzyme called organophosphate hydrolase or phosphotriesterase catalyzes the first step of the degradation. organophosphate hydrolase encoding gene opd (organophosphate degrading) gene has been isolated from geographically different regions and taxonomically different species. This gene has been sequenced, cloned in different organisms, and altered for better activity and stability. Recently, genes with similar function but different sequences have also been isolated and characterized. Engineered microorganisms have been tested for their ability to degrade different organophosphorus pollutants, including nerve agents. In this article, we review and propose pathways for degradation of some organophosphorus compounds by microorganisms. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are discussed. The major achievements and technological advancements towards bioremediation of organophosphorus compounds, limitations of available technologies and future challenge are also discussed.  相似文献   

2.
A crude cell extract from a mixed bacterial culture growing on parathion, an organophosphate insecticide, hydrolyzed parathion (21 C) at a rate of 416 nmol/min per mg of protein. This rate of enzymatic hydrolysis, when compared with chemical hydrolysis by 0.1 N sodium hydroxide at 40 C, was 2, 450 times faster. Eight of 12 commonly used organophosphate insecticides were enzymatically hydrolyzed with this enzyme preparation at rates ranging from 12 to 1,360 nmol/min per mg of protein. Seven pesticides were hydrolyzed at rates significantly higher (40 to 1,005 times faster) than chemical hydrolysis. The pH optimum for enzymatic hydrolysis of the eight pesticides ranged from 8.5 to 9.5, with less than 50% of maximal activity expressed at pH 7.0. Maximal enzyme activity occurred at 35 C. The crude extract lost its activity at the rate of only 0.75%/day when stored at 6 C. Eight organic solvents, ranging from methanol to hexane, at low concentrations stimulated enzymatic hydrolysis by 3 to 20%, whereas at higher concentrations (1,000 mg/liter) they inhibited the reaction (9 to 50%). Parathion metabolites p-nitrophenol, hydroquinone, and diethylthiophosphoric acid, at up to 100-mg/liter concentrations, did not significantly influence enzyme activity.  相似文献   

3.
The cytogenetic activity of some substances formed in agricultural plants during metabolism of pesticides of four classes of chemical compounds was studied in the culture of human peripheric blood lymphocytes. Metabolites were shown either to have mutagenic properties similar to those of the initial compounds (ziramtetramethylthiourea, both being mutagens; captan-phthalimide, both possessing no cytogenetic activity) or to be considerably transformed in comparison with them as a result of deactivation (benomile-MBC) or activation (betanal-MHPC) processes. The latter variant if being determined for the genetic hazard of the pesticide necessitates to take into account data on the mutagenic character of those metabolites which really might enter the human organism.  相似文献   

4.
Pseudomonas putida KT2442 was engineered to use the organophosphate pesticide parathion, a compound similar to other organophosphate pesticides and chemical warfare agents, as a source of carbon and energy. The initial step in the engineered degradation pathway was parathion hydrolysis by organophosphate hydrolase (OPH) to p-nitrophenol (PNP) and diethyl thiophosphate, compounds that cannot be metabolized by P. putida KT2442. The gene encoding the native OPH (opd), with and without the secretory leader sequence, was cloned into broad-host-range plasmids under the control of tac and taclac promoters. Expression of opd from the tac promoter resulted in high OPH activity, whereas expression from the taclac promoter resulted in low activity. A plasmid-harboring operons encoding enzymes for p-nitrophenol transformation to beta-ketoadipate was transformed into P. putida allowing the organism to use 0.5 mM PNP as a carbon and energy source. Transformation of P. putida with the plasmids harboring opd and the PNP operons allowed the organism to utilize 0.8 mM parathion as a source of carbon and energy. Degradation studies showed that parathion formed a separate dense, non-aqueous phase liquid phase but was still bioavailable.  相似文献   

5.
Pesticide pollution can alter parasite transmission, but scientists are unaware if effects of pesticides on parasite exposure and host susceptibility (i.e. infection risk given exposure) can be generalised within a community context. Using replicated temperate pond communities, we evaluate effects of 12 pesticides, nested in four pesticide classes (chloroacetanilides, triazines, carbamates organophosphates) and two pesticide types (herbicides, insecticides) applied at standardised environmental concentrations on larval amphibian exposure and susceptibility to trematode parasites. Most of the variation in exposure and susceptibility occurred at the level of pesticide class and type, not individual compounds. The organophosphate class of insecticides increased snail abundance (first intermediate host) and thus trematode exposure by increasing mortality of snail predators (top–down mechanism). While a similar pattern in snail abundance and trematode exposure was observed with triazine herbicides, this effect was driven by increases in snail resources (periphytic algae, bottom–up mechanism). Additionally, herbicides indirectly increased host susceptibility and trematode infections by (1) increasing time spent in susceptible early developmental stages and (2) suppressing tadpole immunity. Understanding generalisable effects associated with contaminant class and type on transmission is critical in reducing complexities in predicting disease dynamics in at‐risk host populations.  相似文献   

6.
Biological degradation of explosives and chemical agents   总被引:5,自引:0,他引:5  
Hazardous energetic organo-nitro compounds are found as contaminants in many environments. A series of nitro aromatics, nitrate esters and nitro amines, all characteristic of this class, has been studied for their susceptibility to biological transformation. Biotransformation pathways for each of these compounds have been identified and are summarized. Implications for these findings in light of current contamination issues is discussed. The detoxification of organophosphate chemical agents focuses on the investigation of organophosphate degrading enzymes from bacteria. Certain of these enzymes, active both in solution and when immobilized onto a solid surface, are very successful in hydrolyzing and detoxifying various organophosphate chemical agents. The relationship of this research to the critical concerns of the agricultural industry regarding detoxification of organophosphorous pesticides is discussed.  相似文献   

7.
Irreversible inhibition of the essential nervous system enzyme acetylcholinesterase by organophosphate nerve agents and pesticides may quickly lead to death. Oxime reactivators currently used as antidotes are generally less effective against pesticide exposure than nerve agent exposure, and pesticide exposure constitutes the majority of cases of organophosphate poisoning in the world. The current lack of published structural data specific to human acetylcholinesterase organophosphate‐inhibited and oxime‐bound states hinders development of effective medical treatments. We have solved structures of human acetylcholinesterase in different states in complex with the organophosphate insecticide, paraoxon, and oximes. Reaction with paraoxon results in a highly perturbed acyl loop that causes a narrowing of the gorge in the peripheral site that may impede entry of reactivators. This appears characteristic of acetylcholinesterase inhibition by organophosphate insecticides but not nerve agents. Additional changes seen at the dimer interface are novel and provide further examples of the disruptive effect of paraoxon. Ternary structures of paraoxon‐inhibited human acetylcholinesterase in complex with the oximes HI6 and 2‐PAM reveals relatively poor positioning for reactivation. This study provides a structural foundation for improved reactivator design for the treatment of organophosphate intoxication. Proteins 2016; 84:1246–1256. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
San Jose scale, Diaspidiotus perniciosus (Comstock), is a serious pest in Chilean apple tree orchards, and a number of organophosphate insecticides were used to control them for decades. Recently, control failures with these insecticides were reported and linked to insecticide resistance development. In this study, 40 San Jose scale field populations were collected and their susceptibility to two commonly used organophosphate insecticides, that is chlorpyrifos and methidathion, was assessed. The obtained bioassay data suggest moderate levels of resistance to both insecticides when compared to a reference susceptible strain. The highest resistance ratio (RR) detected for chlorpyrifos and methidathion was 31‐fold and 11‐fold, respectively. The bioassay results suggest the occurrence of a significant cross‐resistance between both compounds. Biochemical measurements revealed a role for esterases in conferring resistance to organophosphates, but not modified acetylcholinesterase. The spatial spread and extend of insecticide resistance were also evaluated. Our result shows that no autocorrelation can be assumed, and then, insecticide resistance is caused by random factors.  相似文献   

9.
Steroidal compounds have been utilized as carriers and for modification of physico-chemical properties of model biologically active secondary alcohols - juvenoids. Juvenoids are juvenile hormone analogues - environmentally safe insecticides, possessing significant biological activity towards different arthropods groups in focus on insect pest species. Structure modification of juvenoids plays important role to control the rate of liberation and decomposition of juvenoid in digestive system and can also play important role in the mode of action towards selected insect. This study presents an approach to the synthesis of steroidal monomers and dimers carrying one and two molecules of a juvenoid in their structures. The prepared compounds were tested for their inhibition activity on reproduction of the blowfly Neobellieria (Sarcophaga) bullata. These steroid-juvenoid conjugates showed promising possibilities in synthesis of new unique biochemical insecticides. Preliminary biological test results of prepared compounds are presented.  相似文献   

10.
Cytochrome P450 monooxygenases are involved in insecticide resistance in insects. We previously observed an increase in CYP6P7 and CYP6AA3 mRNA expression in Anopheles minimus mosquitoes during the selection for deltamethrin resistance in the laboratory. CYP6AA3 has been shown to metabolize deltamethrin, while no information is known for CYP6P7. In this study, CYP6P7 was heterologously expressed in the Spodoptera frugiperda (Sf9) insect cells via baculovirus‐mediated expression system. The expressed CYP6P7 protein was used for exploitation of its enzymatic activity against insecticides after reconstitution with the An. minimus NADPH‐cytochrome P450 reductase enzyme in vitro. The ability of CYP6P7 to metabolize pyrethroids and insecticides in the organophosphate and carbamate groups was compared with CYP6AA3. The results revealed that both CYP6P7 and CYP6AA3 proteins could metabolize permethrin, cypermethrin, and deltamethrin pyrethroid insecticides, but showed the absence of activity against bioallethrin (pyrethroid), chlorpyrifos (organophosphate), and propoxur (carbamate). CYP6P7 had limited capacity in metabolizing λ‐cyhalothrin (pyrethroid), while CYP6AA3 displayed activity toward λ‐cyhalothrin. Kinetic properties suggested that CYP6AA3 had higher efficiency in metabolizing type I than type II pyrethroids, while catalytic efficiency of CYP6P7 toward both types was not significantly different. Their kinetic parameters in insecticide metabolism and preliminary inhibition studies by test compounds in the flavonoid, furanocoumarin, and methylenedioxyphenyl groups elucidated that CYP6P7 had different enzyme properties compared with CYP6AA3. © 2011 Wiley Periodicals, Inc.  相似文献   

11.

Background

Selection of pesticides with small ecological footprints is a key factor in developing sustainable agricultural systems. Policy guiding the selection of pesticides often emphasizes natural products and organic-certified pesticides to increase sustainability, because of the prevailing public opinion that natural products are uniformly safer, and thus more environmentally friendly, than synthetic chemicals.

Methodology/Principal Findings

We report the results of a study examining the environmental impact of several new synthetic and certified organic insecticides under consideration as reduced-risk insecticides for soybean aphid (Aphis glycines) control, using established and novel methodologies to directly quantify pesticide impact in terms of biocontrol services. We found that in addition to reduced efficacy against aphids compared to novel synthetic insecticides, organic approved insecticides had a similar or even greater negative impact on several natural enemy species in lab studies, were more detrimental to biological control organisms in field experiments, and had higher Environmental Impact Quotients at field use rates.

Conclusions/Significance

These data bring into caution the widely held assumption that organic pesticides are more environmentally benign than synthetic ones. All pesticides must be evaluated using an empirically-based risk assessment, because generalizations based on chemical origin do not hold true in all cases.  相似文献   

12.
Chromosome aberrations (CA) and sister-chromatid exchanges (SCE) were measured in lymphocytes of (A) 32 healthy individuals working in the flower industry and exposed to pesticides, (B) 32 individuals exposed as above and hospitalized for bladder cancer, and (C) 31 controls. Compounds to which floriculturists were exposed included 18 nitro-organic herbicides and fungicides, 9 nitro-organic fungicides, 12 organophosphate and organothiophosphate insecticides, 4 hydrocarbon derivative herbicides and 5 inorganic fungicides and insecticides. 150 and 70 metaphases per individual were scored for CA and SCE, respectively. A significant increase in the incidence of CA and SCE was observed in both exposed groups. Cancer patients showed the presence of rare rearrangements (dicentrics, rings and quadriradials) that were not observed in controls and were present at a lower frequency in healthy exposed people. Hyperdiploid and polyploid metaphases were also significantly increased in the 2 exposed groups compared to controls. Stratifying for age or smoking habits, although affecting the significance of individual data, did not change the substance of the results.  相似文献   

13.
Abstract

Several carbamate and organophosphate compounds are used to control a wide variety of insect pests, weeds, and disease-transmitting vectors. These chemicals were introduced to replace the recalcitrant and hazardous chlorinated pesticides. Although newly introduced pesticides were considered to be biodegradable, some of them are highly toxic and their residues are found in certain environments. In addition, degradation of some of the carbamates generates metabolites that are also toxic. In general, hydrolysis of the carbamate and organophosphates yields less toxic metabolites compared with the metabolites produced from oxidation. Although microorganisms capable of degrading many of these pesticides have been isolated, knowledge about the biochemical pathways and respective genes involved in the degradation is sparse. Recently, a great deal of interest in the mechanisms of biodegradation of carbamate and organophosphate compounds has been shown because (1) an efficient mineralization of the pesticides used for insect control could eliminate the problems of environmental pollution, (2) a balance between degradation and efficacy of pesticides could result in safer application and effective insect control, and (3) knowledge about the mechanisms of biodegradation could help to deal with situations leading to the generation of toxic metabolites and bioremediation of polluted environments. In addition, advances in genetic engineering and biotechnology offer great potential to exploit the degradative properties of microorganisms in order to develop bioremediation strategies and novel applications such as development of economic plants tolerant to herbicides. In this review, recent advances in the biochemical and genetic aspects of microbial degradation of carbamate and organophosphates are discussed and areas in need of further investigation identified.  相似文献   

14.
Synthesis and antimycotic activity of N-azolyl-2,4-dihydroxythiobenzamides   总被引:1,自引:0,他引:1  
N-pyrazole and N-1,2,4-triazole derivatives of 2,4-dihydroxythiobenzamide prepared from sulfinyl-bis-(2,4-dihydroxythiobenzoyl) and commercially available azole amines were tested for their antimycotic activity. The chemical structure of compounds was confirmed by IR, 1H NMR, MS and elemental analysis. The MIC values against the reference strain Candida albicans ATCC 10231, azole-resistant clinical isolates of Candida albicans and non-Candida albicans species were determined for their potential activity in vitro. The compounds exhibited comparable or higher activity than itraconazole and fluconazole tested under the same experimental conditions. Pyrazoline derivatives showed higher activity than other analogues. The strongest fungistatic activity for N-(2,3-dimethyl-1-phenyl-1,2-dihydro-5-oxo-5H-pyrazol-4-yl)-2,4-dihydroxythiobenzamide was found with MIC values significantly lower than those for the studied drugs.  相似文献   

15.
Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.g., mutation profiles) and regulatory (e.g., the gene expression of Ldace1 and Ldace2, AChE activity) differences between two populations (Vermont, USA and Belchow, Poland) of the Colorado potato beetle, Leptinotarsa decemlineata in their resistance to two commonly used groups of insecticides, organophosphates, and carbamates. We established that Vermont beetles were more resistant to azinphos‐methyl and carbaryl insecticides than Belchow beetles, despite a similar frequency of resistance‐associated alleles (i.e., S291G) in the Ldace2 gene. However, the Vermont population had two additional amino acid replacements (G192S and F402Y) in the Ldace1 gene, which were absent in the Belchow population. Moreover, the Vermont population showed higher expression of Ldace1 and was less sensitive to AChE inhibition by azinphos‐methyl oxon than the Belchow population. Therefore, the two populations have evolved different genetic mechanisms to adapt to organophosphate and carbamate insecticides.  相似文献   

16.
Bifenazate, a new and frequently used carbazate, is a pro-acaricide which needs to be activated by carboxylesterases. We evaluated the possible antagonism of organophosphate and carbamate insecticides on bifenazate toxicity in Tetranychus urticae applied in mixtures. Two organophosphate resistant strains were used (WI and MR-VL) and several organophosphate (chlorpyrifos, azinphosmethyl and phosmet) and carbamate (carbaryl and methomyl) insecticides were evaluated. Mixing chlorpyrifos with bifenazate decreased bifenazate toxicity in both tested strains. However, in the strain with a higher esterase activity, antagonism decreased after 2 days. Of all other tested chemicals, only methomyl displayed an antagonistic effect 1 day after treatment. These findings indicate that mixing organophosphate and carbamate insecticides with bifenazate may inhibit bifenazate efficacy under field conditions, especially when resistant strains are present.  相似文献   

17.
Esterases are involved in the susceptibility or resistance of organisms to organophosphate pesticides. We have examined the action of parathion on the marine dinoflagellates Crypthecodinium cohnii and Prorocentrum micans by looking at their esterases. One-dimensional gel electrophoresis, immunoblotting and cytochemistry plus image analysis were used to characterize the nature and distribution of the enzymes. Esterases were found in both species, but there appeared to be no particular intracellular localization. The esterase activity of the heterotrophic species Crypthecodinium cohnii was 30-fold greater than that of the autotrophic Prorocentrum micans and had an antigenic site in common with mosquito esterase. The resistance of Crypthecodinium cohnii to parathion was specific and reversible. Less parathion entered the parathion-resistant Crypthecodinium cohnii cells than the untreated control cells. Parathion-resistant cell extracts of Crypthecodinium cohnii analyzed after immunoblotting also contained an additional band of esterase activity. These results confirm the importance of esterases in toxicological studies of organophosphate insecticides, especially those of marine dinoflagellates.  相似文献   

18.
To elucidate genetic variation in susceptibility to organophosphate insecticides within natural populations of Drosophila melanogaster, we conducted an analysis of variance for mortality data sets of isofemale lines (10-286 lines) used in the previous studies. Susceptibility of isofemale lines to the three organophosphate insecticides was continuously distributed within each natural population, ranging from susceptible to resistant. Analysis of variance showed highly significant variation among isofemale lines in susceptibility to each insecticide for each natural population. Significant genetic variances in susceptibility to the three chemicals were estimated for the Katsunuma population; 0.0529-0.2722 for malathion, 0.0492-0.1603 for prothiophos, and 0.0469-0.1696 for fenitrothion. Contrary to the consistent seasonal tendency towards an increase in mean susceptibility in the fall, reported in the previous study, genetic variances in susceptibility to the three organophosphates did not change significantly in 1997 but tended to increase by 2- to 5-times in 1998. We tested whether both the observed situations, maintenance and increase in genetic variance in organophosphate resistance, can be generated under circumstances in which the levels of resistance to the three organophosphates tended to decrease, by conducting a simulation analysis, based on the hypothesis that resistant genotypes have lower fitnesses than susceptible ones under the density-independent condition. The simulation analysis generally explained the pattern in the mean susceptibility and genetic variances in susceptibility to the three organophosphates, observed in the Katsunuma population of D. melanogaster. It was suggested that the differences in the frequencies of resistance genes in the summer population could affect the patterns in genetic variance in organophosphate resistance in the fall population.  相似文献   

19.
H. A. Wood  P. R. Hughes 《BioControl》1996,41(3-4):361-373
Biological control agents such as baculovirus insecticides have many attributes which make them attractive alternatives to synthetic chemical pesticides. However, there have been several economic and agronomic barriers to their widespread use. Among the obstacles to commercialization of viral insecticides have been high production costs, the lack of efficacious formulation and application technologies, and a slow speed of action. Biotechnology has contributed several advances toward overcoming these obstacles. The high cost ofin vivo production can be reduced significantly using a newly developed high-density rearing system termed HeRD. The HeRD technology can be used to rear many different species of lepidopterous larvae for production of viral insecticides, as hosts for parasitoid production, or for sterile-male release programs. Using this technology, the baculovirus production costs are equivalent to sprayable Bt toxins. The field efficacy of viral pesticides and other biological control agents requires cost effective, biologically based formulation and application technologies. Based on current field efficacy evaluations of baculovirus pesticides, formulation/application technologies must be improved for viral pesticides to compete effectively and consistently in most pesticide markets. Through recombinant DNA technology, it is now possible to insert foreign pesticidal genes into viral pesticides, resulting in faster time to death or, more importantly, time to cessation of feeding of the target pests. However, the commercial use of recombinant pesticides has raised several potential environmental issues, including possible effects on non-target organisms, ecological interactions, mitigation and genetic stability. Genetic strategies have been developed to mitigate most of the potential problems associated with recombinant baculovirus pesticides. Five field tests have been conducted in the U.S. to evaluate these strategies. The laboratory and field results illustrate that the genetic strategies employed ensure environmental safety while also reducing production costs.  相似文献   

20.
The disruption of chemical communication between insects and host plants may take place due to an interference with the signal‐emitting host plant, or the signal‐receiving insect, compromising the signal production and emission, or its reception and processing. Anthropogenic compounds, in general, and pesticides, in particular, may impair the chemical communication that mediates host location by insects. Five different pesticides (the insecticides malathion, pyrethrins and spinetoram, and the fungicides fenhexamid and pyrimethanil) were applied at their field rates to raspberry fruits, or Petri dishes enclosing adult spotted wing Drosophila (SWD; Drosophila suzukii), and the attraction to fruit volatiles was evaluated in a series of two‐choice flight bioassays. The application of raspberry fruit with pesticides did not statistically affect attraction of unexposed adults, with exceptions being the spinetoram treatment, which led to mild insect avoidance, and the pyrethrin treatment, which resulted in slightly preferential attraction. In contrast, adults sublethally exposed to the pesticides had their flight take‐off impaired by the insecticides, but not by the fungicides. Furthermore, all pesticides, and particularly the insecticides, compromised the upwind capture of adults. Thus, the treatment with pesticides may indeed interfere with the flight response of SWD to host volatiles, particularly when the insects were previously exposed to pesticides. These findings are suggestive of the potential for sublethal insecticidal exposures to aid pest control and also provide evidence that pesticide use may compromise sampling/trapping strategies for this pest species that are based on attraction to host volatiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号