共查询到20条相似文献,搜索用时 0 毫秒
1.
不同生物类群包含的物种数目常存在巨大差异,这是生态学和生物学研究中普遍观察到的现象。然而,这一现象产生的原因仍然是未解之谜。从宏观进化的角度,进化时间假说和多样化速率假说是两个比较流行的假说。进化时间假说认为类群的演化时间越长,积累的物种丰富度越高;而多样化速率假说认为类群的净多样化速率越快,则其物种丰富度越高。为验证这两个假说,该文以一棵包含1 539个物种化石定年的虎耳草目系统发育树为基础,通过宏观进化分析获取了虎耳草目内15个科的物种形成和灭绝速率,并计算了每个科的平均多样化速率。结果表明:(1)虎耳草目的物种多样化速率有着增加的趋势,并且多样化速率的增加主要出现在温带和高山类群,如茶藨子科、景天科和芍药科等。(2)采用系统发育广义最小二乘模型(PGLS)和线性回归模型(LM)结果表明,虎耳草目15个科的物种丰富度与科的分化时间和科内物种的最近共同祖先年龄都没有显著相关关系,而与净多样化速率显著正相关(R2 =0.380,P<0.05)。该研究支持了多样化速率假说,认为不同科的净多样化速率的差异是导致虎耳草目科间物种数目差异的主要原因之一。全球气候变冷... 相似文献
2.
Selina R. Cole 《Palaeontology》2019,62(3):357-373
Order Diplobathrida is a major clade of camerate crinoids spanning the Ordovician–Mississippian, yet phylogenetic relationships have only been inferred for Ordovician taxa. This has hampered efforts to construct a comprehensive tree of life for crinoids and develop a classification scheme that adequately reflects diplobathrid evolutionary history. Here, I apply maximum parsimony and Bayesian phylogenetic approaches to the fossil record of diplobathrids to infer the largest tree of fossil crinoids to date, with over 100 genera included. Recovered trees provide a framework for evaluating the current classification of diplobathrids. Notably, previous suborder divisions are not supported, and superfamily divisions will require significant modification. Although numerous revisions are required for families, most can be retained through reassignment of genera. In addition, recovered trees were used to produce phylogeny‐based estimates of diplobathrid lineage diversity. By accounting for ghost lineages, phylogeny‐based richness estimates offer greater insight into diversification and extinction dynamics than traditional taxonomy‐based approaches alone and provide a detailed summary of the ~150 million‐year evolutionary history of Diplobathrida. This study constitutes a major step toward producing a phylogeny of the Crinoidea and documenting crinoid diversity dynamics. In addition, it will serve as a framework for subsequent phylogeny‐based investigations of macroevolutionary questions. 相似文献
3.
C. Simonet R. Scherrer A. Rego‐Costa R. S. Etienne 《Journal of evolutionary biology》2018,31(3):469-479
The protracted speciation model presents a realistic and parsimonious explanation for the observed slowdown in lineage accumulation through time, by accounting for the fact that speciation takes time. A method to compute the likelihood for this model given a phylogeny is available and allows estimation of its parameters (rate of initiation of speciation, rate of completion of speciation and extinction rate) and statistical comparison of this model to other proposed models of diversification. However, this likelihood computation method makes an approximation of the protracted speciation model to be mathematically tractable: it sometimes counts fewer species than one would do from a biological perspective. This approximation may have large consequences for likelihood‐based inferences: it may render any conclusions based on this method completely irrelevant. Here, we study to what extent this approximation affects parameter estimations. We simulated phylogenies from which we reconstructed the tree of extant species according to the original, biologically meaningful protracted speciation model and according to the approximation. We then compared the resulting parameter estimates. We found that the differences were larger for high values of extinction rates and small values of speciation‐completion rates. Indeed, a long speciation‐completion time and a high extinction rate promote the appearance of cases to which the approximation applies. However, surprisingly, the deviation introduced is largely negligible over the parameter space explored, suggesting that this approximate likelihood can be applied reliably in practice to estimate biologically relevant parameters under the original protracted speciation model. 相似文献
4.
Xia Hua Lindell Bromham 《Evolution; international journal of organic evolution》2020,74(12):2605-2616
A central theme connecting macroevolutionary processes to macroecological patterns is the shaping of regional biodiversity over time through speciation, extinction, migration, and range shifts. The use of phylogenies to explore the dynamics of diversification due to variation in speciation and extinction rates has been well-developed and there are established methods for inferring speciation times from phylogenies and generating its null distributions (as represented by node heights on molecular phylogenies). But inferring colonization events from phylogenies is more challenging. Unlike speciation events, represented by nodes, colonization events could occur at any point along a branch connecting species in the assemblage to the regional pool. We account for uncertainty in identification of colonization lineages and timing of colonization events by using an efficient analytical solution to inferring the distribution of colonization times from an assemblage phylogeny. Using the same solution, we efficiently derive the null distribution of colonization times, which provides us with a general approach to testing the adequacy of a model to describe colonization events into the assemblage. We illustrate this approach by demonstrating how the movement of squamate lineages into Madagascar has been uneven over time, peaking in the early Cenozoic when ocean conditions favored colonization. 相似文献
5.
The dynamics of species diversification rates are a key component of macroevolutionary patterns. Although not absolutely necessary, the use of divergence times inferred from sequence data has led to development of more powerful methods for inferring diversification rates. However, it is unclear what impact uncertainty in age estimates have on diversification rate inferences. Here, we quantify these effects using both Bayesian and frequentist methodology. Through simulation, we demonstrate that adding sequence data results in more precise estimates of internal node ages, but a reasonable approximation of these node ages is often sufficient to approach the theoretical minimum variance in speciation rate estimates. We also find that even crude estimates of divergence times increase the power of tests of diversification rate differences between sister clades. Finally, because Bayesian and frequentist methods provided similar assessments of error, novel Bayesian approaches may provide a useful framework for tests of diversification rates in more complex contexts than are addressed here. 相似文献
6.
EXPLOSIVE EVOLUTIONARY RADIATIONS: DECREASING SPECIATION OR INCREASING EXTINCTION THROUGH TIME? 总被引:2,自引:0,他引:2
A common pattern in time-calibrated molecular phylogenies is a signal of rapid diversification early in the history of a radiation. Because the net rate of diversification is the difference between speciation and extinction rates, such \"explosive-early\" diversification could result either from temporally declining speciation rates or from increasing extinction rates through time. Distinguishing between these alternatives is challenging but important, because these processes likely result from different ecological drivers of diversification. Here we develop a method for estimating speciation and extinction rates that vary continuously through time. By applying this approach to real phylogenies with explosive-early diversification and by modeling features of lineage-accumulation curves under both declining speciation and increasing extinction scenarios, we show that a signal of explosive-early diversification in phylogenies of extant taxa cannot result from increasing extinction and can only be explained by temporally declining speciation rates. Moreover, whenever extinction rates are high, \"explosive early\" patterns become unobservable, because high extinction quickly erases the signature of even large declines in speciation rates. Although extinction may obscure patterns of evolutionary diversification, these results show that decreasing speciation is often distinguishable from increasing extinction in the numerous molecular phylogenies of radiations that retain a preponderance of early lineages. 相似文献
7.
8.
Andr Luís Luza Renan Maestri Vanderlei Júlio Debastiani Bruce D. Patterson Sandra Maria Hartz Leandro D. S. Duarte 《Ecology and evolution》2021,11(24):18676
We evaluated whether evolution is faster at ecotones as niche shifts may be needed to persist under unstable environment. We mapped diet evolution along the evolutionary history of 350 sigmodontine species. Mapping was used in three new tip‐based metrics of trait evolution – Transition Rates, Stasis Time, and Last Transition Time – which were spatialized at the assemblage level (aTR, aST, aTL). Assemblages were obtained by superimposing range maps on points located at core and ecotone of the 93 South American ecoregions. Using Linear Mixed Models, we tested whether ecotones have species with more changes from the ancestral diet (higher aTR), have maintained the current diet for a shorter time (lower aST), and have more recent transitions to the current diet (lower aLT) than cores. We found lower aTR, and higher aST and aLT at ecotones than at cores. Although ecotones are more heterogeneous, both environmentally and in relation to selection pressures they exert on organisms, ecotone species change little from the ancestral diet as generalist habits are necessary toward feeding in ephemeral environments. The need to incorporate phylogenetic uncertainty in tip‐based metrics was evident from large uncertainty detected. Our study integrates ecology and evolution by analyzing how fast trait evolution is across space. 相似文献
9.
In this study, the phylogenetic trees of jacks and pompanos (Carangidae), an ecologically and morphologically diverse, globally distributed fish family, are inferred from a complete, concatenated data set of two mitochondrial (cytochrome c oxidase I, cytochrome b) loci and one nuclear (myosin heavy chain 6) locus. Maximum likelihood and Bayesian inferences are largely congruent and show a clear separation of Carangidae into the four subfamilies: Scomberoidinae, Trachinotinae, Naucratinae and Caranginae. The inclusion of the carangid sister lineages Coryphaenidae (dolphinfishes) and Rachycentridae (cobia), however, render Carangidae paraphyletic. The phylogenetic trees also show with high statistical support that the monotypic vadigo Campogramma glaycos is the sister to all other species within the Naucratinae. 相似文献
10.
John A. Finarelli Catherine Badgley 《Proceedings. Biological sciences / The Royal Society》2010,277(1694):2721-2726
Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth''s history. 相似文献
11.
Astragalus, the largest genus of flowering plants, contains upwards of 2500 species. Explanations for this exceptional species diversity have pointed to unusual population structure or modes of speciation. Surprisingly, however, three different statistical analyses indicate that diversification rates in Astragalus are not exceptionally high compared to its closest relatives. Instead, rates are high throughout the “Astragalean clade,” a much broader radiation distributed throughout the temperate zone. The increase in diversification rate is associated with the origin and divergence of this clade from common ancestors of it and several much less diverse and more narrowly distributed Asian genera. This suggests that causal factors in the shift toward higher rates of diversification must be due not to factors unique to Astragalus, but to characteristics common to the entire Astragalean clade. However, this larger clade has never been circumscribed in classifications based on morphological data. This raises the possibility that the causes of increased diversification may not be due to morphological innovation, but may instead be related to ecological factors or cryptic physiological or biochemical features. 相似文献
12.
13.
For studies investigating trait evolution, there are at least two important questions. First, have traits under consideration influenced cladogenesis and extinction in the group? Second, how do fossil data alter inferences about trait evolution or diversification‐rate dynamics? However, relatively few studies have assessed these questions. Here, we use recently developed methods to test for trait‐dependent diversification in the New World colubrid snake tribe Lampropeltini. We also integrate data from fossil taxa into phylogenetic estimation of evolutionary parameters using a simple Monte Carlo randomization test. These analyses suggest that ecological conditions in temperate regions are tied to higher rates of cladogenesis, but that body size is not related to diversification in the group. We also find that the inclusion of fossil taxa alters absolute estimates of size and the rate of size evolution, but not the overall pattern of ecomorphological diversification, as well as estimates of evolutionary rates, particularly extinction. 相似文献
14.
We examined phylogenetic relationships and patterns of stem structural evolution in Eleocharis subgenus Limnochloa, an ecologically and economically important group of tropical to temperate-growing sedges, whose stems serve as the primary photosynthetic organs. We used maximum parsimony, likelihood, and Bayesian inference to develop phylogenetic trees and stochastic mapping and a Markov one-rate model to develop character history reconstructions of stem architecture. A complex history of stem shape evolution characterized by a high degree of homoplasy and rapid rates of change (an average of 13 transitions per character history for about 25 species) was identified across subgenus Limnochloa. Character states transition much more frequently in some lineages than others, but tend to follow a consistent directional pattern of evolutionary change. Our data also suggest that changes in stem shape and anatomy may be associated with speciation events in the subgenus (Pagel's κ = 0.3503, P = 0.04579) and may have some adaptive significance. The potential adaptive roles of stem structural traits are unclear, but may be elucidated by further studies. This work serves as a starting point for future evolutionary studies of stem shape and structure in monocots and provides important background knowledge for further studies of ecological adaptations of Eleocharis. 相似文献
15.
John J. Wiens Jamie L. Slingluff 《Evolution; international journal of organic evolution》2001,55(11):2303-2318
Abstract One of the most striking morphological transformations in vertebrate evolution is the transition from a lizardlike body form to an elongate, limbless (snakelike) body form. Despite its dramatic nature, this transition has occurred repeatedly among closely related species (especially in squamate reptiles), making it an excellent system for studying macroevolutionary transformations in body plan. In this paper, we examine the evolution of body form in the lizard family Anguidae, a clade in which multiple independent losses of limbs have occurred. We combine a molecular phylogeny for 27 species, our morphometric data, and phylogenetic comparative methods to provide the first statistical phylogenetic tests of several long‐standing hypotheses for the evolution of snakelike body form. Our results confirm the hypothesized relationships between body elongation and limb reduction and between limb reduction and digit reduction. However, we find no support for the hypothesized sequence going from body elongation to limb reduction to digit loss, and we show that a burrowing lifestyle is not a necessary correlate of limb loss. We also show that similar degrees of overall body elongation are achieved in two different ways in anguids, that these different modes of elongation are associated with different habitat preferences, and that this dichotomy in body plan and ecology is widespread in limb‐reduced squamates. Finally, a recent developmental study has proposed that the transition from lizardlike to snakelike body form involves changes in the expression domains of midbody Hox genes, changes that would link elongation and limb loss and might cause sudden transformations in body form. Our results reject this developmental model and suggest that this transition involves gradual changes occurring over relatively long time scales. 相似文献
16.
Premal Shah Benjamin M. Fitzpatrick James A. Fordyce 《Evolution; international journal of organic evolution》2013,67(2):368-377
Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification‐rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false‐positive rates and statistical power to detect rate variation. We apply the PRC method to the well‐studied radiation of North American Plethodon salamanders, and support the inference that the large‐bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders. 相似文献
17.
18.
Antoine Mantilleri 《法国昆虫学会纪事》2016,52(3):107-134
A group of 10 species belonging to the Neotropical tribe Acratini Alonso-Zarazaga, Lyal, Bartolozzi & Sforzi 1999, is shown to be monophyletic by a phylogenetic analysis based on 48 morphological characters. A new genus, Pertusius n. gen., is described, based on three derived characters of external and genital morphology: venter of prorostrum of males with fine median longitudinal carina, base of elytra with deep pit at the place of insertion on mesonotum, and proximal sclerite of endophallus more or less horseshoe-shaped. Eight species were previously known and, according to former authors, belonged to the genera Acratus Lacordaire 1865 [Pertusius apicalis (Sharp 1895), n. comb., P. errabundus (Kleine 1927), n. comb., P. extrarius (Kleine 1927), n. comb., P. fidus (Kleine 1927), n. comb. and P. telesi (Soares & Meyer 1959), n. comb.] and Proteramocerus Kleine 1921 [Pertusius chalcites (Perty 1832), n. comb., P. filum (Sharp 1895), n. comb., and P. laevis (Germar 1824), n. comb.]. Four new synonymies are proposed: Proteramocerus disparilis Soares & Dias 1971, n. syn. for Acratus apicalis Sharp 1895; Teramocerus laevigatus Boheman 1840, n. syn. for Arrhenodes chalcites Perty 1832; Acratus extraordinarius Kleine 1927, n. syn. for Acratus errabundus Kleine 1927; Proteramocerus diringshofeni Soares & Dias 1971, n. syn. for Acratus filum Sharp 1895. Two new species are described: Pertusius guyanensis n. sp. from French Guiana, and P. mexicanus n. sp. from Mexico (Yucatán Peninsula). Pertusius apicalis is newly cited from Bolivia and Peru, P. chalcites from Argentina and Paraguay, P. extrarius from Ecuador, P. fidus from Peru and P. telesi from Trinidad and Tobago and Venezuela. An identification key to species of the genus is provided. 相似文献
19.
20.
H Morlon BD Kemps JB Plotkin D Brisson 《Evolution; international journal of organic evolution》2012,66(8):2577-2586
The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life. 相似文献