首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Ha KT  Lee YC  Cho SH  Kim JK  Kim CH 《Molecules and cells》2004,17(2):267-273
Endogenous expression of human membrane type ganglioside sialidase (Neu3) was examined in various cell lines including NB-1, U87MG, SK-MEL-2, SK-N-MC, HepG2, Hep3B, Jurkat, HL-60, K562, ECV304, Hela and MCF-7. Expression was detected in the neuroblastoma cell lines NB-1 and SK-N-MC, and also in erythroleukemia K562 cells, but not in any other cells. We isolated a Neu3 cDNA from K562 cells and expressed a His-tagged derivative in a bacterial expression system. The purified recombinant product of approximately 48 kDa had sialidase activity toward 4-methyl-umbelliferyl-alpha-D-N-acetylneuraminic acid (4MU-NeuAc). The optimal pH of the purified Neu3 protein for GD3 ganglioside was 4.5. The enzyme also efficiently hydrolyzed GD3, GD1a, GD1b and GM3 whereas sialyllactose, 4MU-NeuAc, GM1 and GM2 were poor substrates, and it had no activity against sialylated glycoproteins such as fetuin, transferrin and orosomucoid. We conclude that the sialidase activity of Neu3 is specific for gangliosides.  相似文献   

2.
Low-density detergent-insoluble membrane domains contain caveolin-1 and are enriched in a phospholipase D activity that is not PLD1. Here we show that caveolin-rich fractions, prepared from HaCaT human keratinocytes by either detergent-based or detergent-free methods, contain PLD2. Caveolar membrane PLD activity is stimulated 2-fold by low concentrations (10-30 microM) of the caveolin-1 and caveolin-2 scaffolding domain peptides, whereas it is inhibited at higher concentrations of the peptides. Immunoisolated HA-tagged PLD1 and PLD2 are not stimulated by the peptides, although both enzymes retain sensitivity to their inhibitory effect. Down-regulation of caveolin-1 expression by treatment of the cells with acetyl-leucyl-leucyl-norleucinal decreased caveolar PLD activity by 50%. Similarly, expression of an active form of the sterol regulatory element-binding protein (SREBP(1-490)) down-regulated caveolin-1 expression by 50% and decreased caveolar PLD activity by 60%. These data identify the PLD activity in caveolin-rich membranes as PLD2 and provide in vivo evidence suggesting that caveolin-1 regulates PLD2 activity.  相似文献   

3.
4.
Compared to other organs, the mouse thymus exhibits a high level of sialidase activity in both the soluble and crude membrane fractions, as measured at neutral pH using 4MU‐Neu5Ac as a substrate. The main purpose of the present study was to identify the sialidase with a high level of the activity at neutral pH in the crude membrane. Several parameters were analyzed using the soluble (S) fraction, N and D fractions that were obtained by NP‐40 or DOC/NP‐40 solubilization from the thymus crude membrane. The main sialidase activity in the N fraction exhibited almost the same pI as that of soluble Neu2 and 60% of the activity was removed from the membrane by three washes with 10 mM Tris‐buffer, at pH 7.0. The N fraction preferentially hydrolyzed the sialic acid bond of glycoprotein and exhibited sialidase activity with fetuin at pH 7.0 but not at pH 4.5. The same activity was observed in a plasma membrane‐rich fraction. To date, the removal of sialic acid from fetuin at pH 7.0 was reported only with soluble Neu2 and the membrane fraction from Neu2‐transfected COS cells. We analyzed the gene that controls the sialidase activity in the crude membrane fraction at pH 7.0 using SMXA recombinant mice and found that compared with other three genes, Neu2 presented the best correlation with the activity level. We suggest that Neu2 is most likely responsible for the main activity in the N fraction, due to its association with the membrane by an unknown mechanism.  相似文献   

5.
A reduction of 70% of the plasma membrane-associated sialidase Neu3 activity, due to a corresponding reduction of the enzyme expression by transducing cells with a short hairpin RNA encoding a sequence target (complementary messenger of mouse Neu3), caused neurite elongation in Neuro2a murine neuroblastoma cells. The differentiation process was accompanied in parallel by an increase of the acetylcholinesterase activity, a moderate increase of the c-Src expression and by the presence of the axonal marker tau protein on the neurites. The sphingolipid pattern and turnover in transduced and control cells were characterized by thin layer chromatography, mass spectrometry and metabolic radiolabeling after feeding cells with tritiated sphingosine. Control cells contained about 2 nmol of gangliosides/mg cell protein. GM2 was the main compound, followed by GD1a, GM3 and GM1. In Neu3 silenced cells, the total ganglioside content remained quite similar, but GM2 increased by 54%, GM3 remain constant, and GM1 and GD1a decreased by 66% and 50%, respectively. Within the organic phase sphingolipids, ceramide decreased by 50%, whereas the sphingomyelin content did not change in Neu3 silenced cells.  相似文献   

6.
7.
The sialylation level of molecules, sialoglycoproteins and gangliosides, protruding from plasma membranes regulates multiple facets of erythrocyte function, from interaction with endothelium to cell lifespan. Our results demonstrate that: (a) Both sialidases NEU1 and NEU3 are present on erythrocyte plasma membrane; (b) NEU1 is kept on the plasma membrane in absence of the protective protein/cathepsin A (PPCA); (c) NEU1 and NEU3 are retained on the plasma membrane, as peripheral proteins, associated to the external leaflet and released by alkaline treatments; (d) NEU1 and NEU3 are segregated in Triton X‐100 detergent‐resistant membrane domains (DRMs); (e) NEU3 shows activity also at neutral pH; and (f) NEU1 and NEU3 are progressively lost during erythrocyte life. Interestingly, sialidase activity released from erythrocyte membranes after an alkaline treatment preserves its functionality and recognizes sialoglycoproteins and gangliosides. On the other hand, the weak anchorage of sialidases to the plasma membrane and their loss during erythrocyte life could be a tool to preserve the cellular sialic acid content in order to avoid the early ageing of erythrocyte and processes of cell aggregation in the capillaries. J. Cell. Biochem. 114: 204–211, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Members of the caveolin protein family are implicated in the formation of caveolae and play important roles in a number of signaling pathways and in the regulation of various proteins. We employ complementary spectroscopic methods to study the structure of the caveolin scaffolding domain (CSD) in caveolin-1 fragments, while bound to cholesterol-rich membranes. This key domain is thought to be involved in multiple critical functions that include protein recognition, oligomerization, and cholesterol binding. In our membrane-bound peptides, residues within the flanking intramembrane domain (IMD) are found to adopt an α-helical structure, consistent with its commonly believed helical hairpin conformation. Intriguingly, in these same peptides, we observe a β-stranded conformation for residues in the CSD, contrasting with earlier reports, which commonly do not reflect β-structure. Our experimental data based on solid-state NMR, CD, and FTIR are found to be consistent with computational analyses of the secondary structure preference of the primary sequence. We discuss how our structural data of membrane binding Cav fragments may match certain general features of cholesterol-binding domains and could be consistent with the role for CSD in protein recognition and homo-oligomerization.  相似文献   

9.
Caveolins are integral membrane proteins which are a major component of caveolae. In addition, caveolins have been proposed to cycle between intracellular compartments and the cell surface but the exact trafficking route and targeting information in the caveolin molecule have not been defined. We show that antibodies against the caveolin scaffolding domain or against the COOH terminus of caveolin-1 show a striking specificity for the Golgi pool of caveolin and do not recognize surface caveolin by immunofluorescence. To analyze the Golgi targeting of caveolin in more detail, caveolin mutants were expressed in fibroblasts. Specific mutants lacking the NH2 terminus were targeted to the cis Golgi but were not detectable in surface caveolae. Moreover, a 32-amino acid segment of the putative COOH-terminal cytoplasmic domain of caveolin-3 was targeted specifically and exclusively to the Golgi complex and could target a soluble heterologous protein, green fluorescent protein, to this compartment. Palmitoylation-deficient COOH-terminal mutants showed negligible association with the Golgi complex. This study defines unique Golgi targeting information in the caveolin molecule and identifies the cis Golgi complex as an intermediate compartment on the caveolin cycling pathway.  相似文献   

10.
Insulin signaling in microdomains of the plasma membrane   总被引:3,自引:0,他引:3  
Although the effects of insulin on glucose and lipid metabolism are well documented, gaps remain in our understanding of the precise molecular mechanisms of signal transduction. Recent evidence suggests that compartmentalization of signaling molecules and metabolic enzymes may explain the unique cellular effects of the hormone. Signal initiation from the insulin receptor is restricted in part to caveolae microdomains of the plasma membrane. A fraction of the insulin receptor directly interacts with caveolin, thus directing the protein to caveolae. Following its activation by insulin, the receptor recruits a series of adapter proteins, resulting in the activation of the G protein TC10, which also resides in caveolae. TC10 can influence a number of cellular processes, including changes in the actin cytoskeleton, recruitment of effector including the adapter protein CIP4, and assembly of the exocyst complex. These events play crucial roles in the trafficking, docking and fusion of vesicles containing the insulin-responsive glucose transporter Glut4 at the plasma membrane.  相似文献   

11.
Mammalian sialidases are key enzymes in the degradation of glycoconjugates. Neu4L sialidase is localized to mitochondria and specifically expressed in brain. To elucidate the pathophysiological roles of Neu4L in the nervous system, we investigated the possible involvement of Neu4L in the apoptotic neurodegeneration under the existence of catechol metabolites generated by tyrosinase. We demonstrated that: (i) the expression level of Neu4L was dramatically decreased prior to apoptosis; (ii) the apoptotic phenotype was characterized by cytochrome c release into cytosol concomitant with the trafficking of ganglioside GD3 to mitochondria; and (iii) the inhibitor of glucosylceramide synthase partially recovered cell viability. Neu4L and its substrate GD3 may act as key molecules in the mitochondrial apoptotic pathway in neuronal cells.  相似文献   

12.
Regulation of Src kinase activity is tightly coupled to the phosphorylation status of the C-terminal regulatory tyrosine Tyr(527), which, when phosphorylated by Csk, represses Src. Here, we demonstrate that activation of Csk through a prostaglandin E(2)-cAMP-protein kinase A (PKA) pathway inhibits Src. This inhibitory pathway is operative in detergent-resistant membrane fractions where cAMP-elevating agents activate Csk, resulting in a concomitant decrease in Src activity. The inhibitory effect on Src depends on a detergent-resistant membrane-anchored Csk and co-localization of all components of the inhibitory pathway in membrane microdomains. Furthermore, epidermal growth factor-induced activation of Src and phosphorylation of the Src substrates Cbl and focal adhesion kinase are inhibited by activation of the cAMP-PKA-Csk pathway. We propose a novel mechanism whereby G protein-coupled receptors inhibit Src signaling by activation of Csk in a cAMP-PKA-dependent manner.  相似文献   

13.
Plasma membrane microdomains represent subcompartments of the plasma membrane characterized by a specific lipid and protein composition. The recognition of microdomains in nearly all the eukaryotic membranes has accredited them with specialized functions in health and disease. Several proteomic studies have recently addressed the specific composition of plasma membrane microdomains, and will be reviewed in this paper. Peculiar information has been obtained, but a comprehensive view of the main protein classes required to define the microdomain proteome is still missing. The achievement of this information is slowed by the difficulties encountered in resolving and analyzing hydrophobic proteins, but it could help in understanding the overall function of plasma membrane microdomains and their involvement in human pathology.  相似文献   

14.
The sarcolemma of smooth muscle cells is composed of alternating stiff actin-binding, and flexible caveolar domains. In addition to these stable macrodomains, the plasma membrane contains dynamic glycosphingolipid- and cholesterol-enriched microdomains, which act as sorting posts for specific proteins and are involved in membrane trafficking and signal transduction. We demonstrate that these lipid rafts are neither periodically organized nor exclusively confined to the actin attachment sites or caveolar regions. Changes in the Ca2+ concentration that are affected during smooth muscle contraction lead to important structural rearrangements within the sarcolemma, which can be attributed to members of the annexin protein family. We show that the associations of annexins II, V, and VI with smooth muscle microsomal membranes exhibit a high degree of Ca2+ sensitivity, and that the extraction of annexins II and VI by detergent is prevented by elevated Ca2+ concentrations. Annexin VI participates in the formation of a reversible, membrane–cytoskeleton complex (Babiychuk, E.B., R.J. Palstra, J. Schaller, U. Kämpfer, and A. Draeger. 1999. J. Biol. Chem. 274:35191–35195). Annexin II promotes the Ca2+-dependent association of lipid raft microdomains, whereas annexin V interacts with glycerophospholipid microcompartments. These interactions bring about a new configuration of membrane-bound constituents, with potentially important consequences for signaling events and Ca2+ flux.  相似文献   

15.
Plasma membrane microdomains represent subcompartments of the plasma membrane characterized by a specific lipid and protein composition. The recognition of microdomains in nearly all the eukaryotic membranes has accredited them with specialized functions in health and disease. Several proteomic studies have recently addressed the specific composition of plasma membrane microdomains, and will be reviewed in this paper. Peculiar information has been obtained, but a comprehensive view of the main protein classes required to define the microdomain proteome is still missing. The achievement of this information is slowed by the difficulties encountered in resolving and analyzing hydrophobic proteins, but it could help in understanding the overall function of plasma membrane microdomains and their involvement in human pathology.  相似文献   

16.
Vascular damage caused by Shiga toxin (Stx)-producing Escherichia coli is largely mediated by Stxs, which in particular, injure microvascular endothelial cells in the kidneys and brain. The majority of Stxs preferentially bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer) and, to a lesser extent, to globotetraosylceramide (Gb4Cer). As clustering of receptor GSLs in lipid rafts is a functional requirement for Stxs, we analyzed the distribution of Gb3Cer and Gb4Cer to membrane microdomains of human brain microvascular endothelial cells (HBMECs) and macrovascular EA.hy 926 endothelial cells by means of anti-Gb3Cer and anti-Gb4Cer antibodies. TLC immunostaining coupled with infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry revealed structural details of various lipoforms of Stx receptors and demonstrated their major distribution in detergent-resistant membranes (DRMs) compared with nonDRM fractions of HBMECs and EA.hy 926 cells. A significant preferential partition of different receptor lipoforms carrying C24:0/C24:1 or C16:0 fatty acid and sphingosine to DRMs was not detected in either cell type. Methyl-β-cyclodextrin (MβCD)-mediated cholesterol depletion resulted in only partial destruction of lipid rafts, accompanied by minor loss of GSLs in HBMECs. In contrast, almost entire disintegration of lipid rafts accompanied by roughly complete loss of GSLs was detected in EA.hy 926 cells after removal of cholesterol, indicating more stable microdomains in HBMECs. Our findings provide first evidence for differently stable microdomains in human endothelial cells from different vascular beds and should serve as the basis for further exploring the functional role of lipid raft-associated Stx receptors in different cell types.  相似文献   

17.
The receptor-like protein tyrosine phosphatase CD45 is essential for TCR signal transduction. Substrates of CD45 include the protein tyrosine kinases p56(lck) and p59(fyn), both of which have been shown to be enriched in detergent-insoluble microdomains. Here we find that there is a cholesterol-dependent association between CD45 and the raft-associated protein linker for activation of T cells, suggesting that CD45 and linker for activation of T cells may colocalize in lipid rafts. Consistent with this observation, we find that approximately 5% of total CD45 can be detected in Triton X-100-insoluble buoyant fractions of sucrose gradients, demonstrating that CD45 is not excluded from lipid rafts. Upon stimulation of T cells with anti-CD3, there is a reduction in the amount of CD45 found associating with lipid rafts. Our data suggest that CD45 is present in lipid rafts in T cells before activation, perhaps to activate raft-associated p56(lck), allowing membrane-proximal signaling events to proceed. Furthermore, the reduction in CD45 content of lipid rafts after CD3 stimulation may serve to limit the amounts of activated p56(lck) in rafts and thus possibly the duration of T cell responses.  相似文献   

18.
Cytosolic sialidase Neu2 has been implicated in myoblast differentiation. Here we observed a significant upregulation of Neu2 expression during differentiation of murine C2C12 myoblasts. This was evidenced both as an increase in Neu2 mRNA steady-state levels and in the cytosolic sialidase enzymatic activity. To understand the biological significance of Neu2 upregulation in myoblast differentiation, C2C12 cells were stably transfected with the rat cytosolic sialidase Neu2 cDNA. Neu2 overexpressing clones were characterized by a marked decrement of cell proliferation and by the capacity to undergo spontaneous myoblast differentiation also when maintained under standard growth conditions. This was evidenced by the formation of myogenin-positive myotubes and by a significant decrease in the nuclear levels of cyclin D1 protein. No differentiation was on the contrary observed in parental and mock-transfected cells under the same experimental conditions. The results indicate that Neu2 upregulation per se is sufficient to trigger myoblast differentiation in C2C12 cells.  相似文献   

19.
Recent evidence demonstrated that T cell activation leads to the redistribution of membrane and intracellular kinase-rich raft microdomains at the site of TCR engagement. In this investigation we demonstrated by high performance thin layer chromatography, gas chromatographic, and mass spectrometric analyses that GM3 is the main ganglioside constituent of these microdomains in human lymphocytes. Then we analyzed GM3 distribution and its interaction with the phosphorylation protein Zap-70. Human T lymphocytes were stimulated with anti-CD3 and anti-CD28. Immunofluorescence microscopy analysis revealed a clustered GM3 distribution over the cell surface and an intracellular localization resembling specific cytoplasmic compartment(s). Scanning confocal microscopy showed that T cell activation induced a significant association between GM3 and Zap-70, as revealed by nearly complete colocalization areas; very few colocalization areas were detected in unstimulated cells. Coimmunoprecipitation experiments revealed that GM3 was immunoprecipitated by anti-Zap-70 only after co-stimulation through CD3 and CD28 as detected by both thin layer chromatography and immunoblotting. Therefore, T cell activation does not promote a redistribution of glycosphingolipid-enriched microdomains but induces Zap-70 translocation in selective membrane domains in which Zap-70 may interact with GM3. These findings suggest that GM3 is a component of a multimolecular signaling complex involved in T cell activation.  相似文献   

20.
Membrane microdomains rich in cholesterol and sphingolipids, including gangliosides (GGs), are known to be important regions for cell signaling and binding sites for various pathogens. Cholesterol depletion inhibits the cellular entry of pathogens and also reduces inflammatory signals by disrupting microdomain structure. Our previous study showed that dietary gangliosides increased total ganglioside incorporation while decreasing cholesterol in the intestinal mucosa. We hypothesized that diet-induced reduction in cholesterol content in the intestinal mucosa disrupts microdomain structure resulting in reduced pro-inflammatory signals. Male weanling Sprague-Dawley rats were fed semipurified diets for 2 weeks. Experimental diets were formulated to include either ganglioside-enriched lipid (GG diet, 0.02% gangliosides [w/w of diet] ) or polyunsaturated fatty acid (PUFA diet, 1% arachidonic acid and 0.5% docosahexaenoic acid, w/w of total fat), in a control diet containing 20% fat. Levels of cholesterol, GG, caveolin, platelet activating factor (PAF), and diglyceride (DG) were measured in the microdomain isolated from the intestinal brush border. The GG diet increased total gangliosides by 50% with a relative increase in GD3 and a relative decrease in GM3. Cholesterol content was also reduced by 23% in the intestinal microdomain. These changes resulted in a significant decrease in the ratio of cholesterol to ganglioside. The GG diet and the PUFA diet were both associated with reduction in caveolin, PAF, and DG content in microdomains, whereas no change occurred in the ganglioside profile of animals fed the PUFA diet. Dietary gangliosides decrease the cholesterol/ganglioside ratio, caveolin, PAF and DG content in microdomains thus exerting a potential anti-inflammatory effect during gut development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号