首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the study of five independent X-linked hydrocephalus (HSAS1) families with polymorphic DNA markers of the Xq28 region. A total of 58 individuals, including 7 living affected males and 22 obligate carriers, have been studied. Maximum lod score was 7.21 at theta = 2.40% for DXS52 (St14-1). A single recombination event was observed between this marker and the HSAS1 locus. Other markers studied were DXS296 (Z = 2.02 at theta = 2.5%), DXS304 (Z = 4.37 at theta = 7.8%), DXS74 (Z = 3.50 at theta = 0%), DXS15 (Z = 1.96 at theta = 5.7%), DXS134 (Z = 3.31 at theta = 0%), and F8C (Z = 5.79 at theta = 0%). These data confirm the localization of the HSAS1 gene to Xq28 and provide evidence for genetic homogeneity of this syndrome. In addition, examination of two obligate recombinant meioses along with multipoint linkage analysis supports the distal localization of the HSAS1 locus with respect to the DXS52 cluster. These observations are of potential interest for future studies aimed at HSAS1 gene characterization.  相似文献   

2.
X-linked hydrocephalus (HSAS) is the most frequent genetic form of hydrocephalus. Clinical symptoms of HSAS include hydrocephalus, mental retardation, clasped thumbs, and spastic paraparesis. Recently we have assigned the HSAS gene to Xq28 by linkage analysis. In the present study we used a panel of 18 Xq27-q28 marker loci to further localize the HSAS gene in 13 HSAS families of different ethnic origins. Among the Xq27-q28 marker loci used, DXS52, DXS15, and F8C gave the highest combined lod scores, of 14.64, 6.53 and 6.33, respectively, at recombination fractions of .04, 0, and .05, respectively. Multipoint linkage analysis localizes the HSAS gene in the telomeric part of the Xq28 region, with a maximal lod score of 20.91 at 0.5 cM distal to DXS52. Several recombinations between the HSAS gene and the Xq28 markers DXS455, DXS304, DXS305, and DXS52 confirm that the HSAS locus is distal to DXS52. One crossover between HSAS and F8C suggests that HSAS gene to be proximal to F8C. Therefore, data from multipoint linkage analysis and the localization of key crossovers indicate that the HSAS gene is most likely located between DXS52 and F8C. This high-resolution genetic mapping places the HSAS locus within a region of less than 2 Mb in length, which is now amenable to positional cloning.  相似文献   

3.
Heterogeneity in X-linked recessive Charcot-Marie-Tooth neuropathy.   总被引:3,自引:0,他引:3       下载免费PDF全文
Three families presenting with X-linked recessive Charcot-Marie-Tooth neuropathies (CMT) were studied both clinically and genetically. The disease phenotype in family 1 was typical of CMT type 1, except for an infantile onset; two of five affected individuals were mentally retarded, and obligate-carrier females were unaffected. Families 2 and 3 showed distal atrophy with weakness, juvenile onset, and normal intelligence. Motor-nerve conduction velocities were significantly slowed, and electromyography data were consistent with denervation in affected CMT males in all three families. Thirty X-linked RFLPs were tested for linkage studies against the CMT disease loci. Family 1 showed tight linkage (recombination fraction [theta] = 0) to Xp22.2 markers DXS16, DXS143, and DXS43, with peak lod scores of 1.75, 1.78, and 2.04, respectively. A maximum lod score of 3.48 at DXS16 (theta = 0) was obtained by multipoint linkage analysis of the map DXS143-DXS16-DXS43. In families 2 and 3 there was suggestion of tight linkage (theta = 0) to Xq26 markers DXS86, DXS144, and DXS105, with peak lod scores of 2.29, 1.33, and 2.32, respectively. The combined maximum multipoint lod score of 1.81 at DXS144 (theta = 0) for these two families occurred in the map DXS10-DXS144-DXS51-DXS105-DXS15-DXS52++ +. A joint homogeneity analysis including both regions (Xp22.2 and Xq26-28) provided evidence against homogeneity (chi 2 = 9.12, P less than .005). No linkage to Xp11.12-q22 markers was observed, as was reported for X-linked dominant CMT and the Cowchock CMT variant. Also, the chromosomes 1 and 17 CMT loci were excluded by pairwise linkage analysis in all three families.  相似文献   

4.
Emery-Dreifuss muscular dystrophy (EDMD) is an X-linked humeroperoneal dystrophy associated with cardiomyopathy that is distinct from the Duchenne and Becker forms of X-linked muscular dystrophy. Linkage analysis has assigned EDMD to the terminal region of the human X chromosome long arm. We report here further linkage analysis in two multigenerational EDMD families using seven Xq28 marker loci. Cumulative lod scores suggest that EDMD is approximately 2 cM from DXS52 (lod = 15.67) and very close to the factor VIII (F8C) and the red/green color pigment (R/GCP) loci, with respective lod scores of 9.62 and 10.77, without a single recombinant. Several recombinations between EDMD and three proximal Xq28 markers suggest that the EDMD gene is located in distal Xq28. Multipoint linkage analysis indicates that the odds are 2,000:1 that EDMD lies distal to DXS305. These data substantially refine the ability to perform accurate carrier detection, prenatal diagnosis, and the presymptomatic diagnosis of at-risk males for EDMD by linkage analysis. The positioning of the EDMD locus close to the loci for F8C and R/GCP will assist in future efforts to identify and isolate the disease gene.  相似文献   

5.
Multipoint linkage analysis in Menkes disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Linkage analyses were performed in 11 families with X-linked Menkes disease. In each family more than one affected patient had been diagnosed. Forty informative meioses were tested using 11 polymorphic DNA markers. From two-point linkage analyses high lod scores are seen for DXS146 (pTAK-8; maximal lod score 3.16 at recombination fraction [theta] = .0), for DXS1 (p-8; maximal lod score 3.44 at theta = .0), for PGK1 (maximal lod score 2.48 at theta = .0), and for DXS3 (p19-2; maximal lod score 2.90 at theta = .0). This indicates linkage to the pericentromeric region. Multilocus linkage analyses of the same data revealed a peak for the location score between DXS146(pTAK-8) and DXYS1X(pDP34). The most likely location is between DXS159 (cpX289) and DXYS1X(pDP34). Odds for this location relative to the second-best-supported region, between DXS146(pTAK-8) and DXS159 (cpX289), are better than 74:1. Visualization of individual recombinant X chromosomes in two of the Menkes families showed the Menkes locus to be situated between DXS159(cpX289) and DXS94(pXG-12). Combination of the present results with the reported absence of Menkes symptoms in male patients with deletions in Xq21 leads to the conclusion that the Menkes locus is proximal to DXSY1X(pDP34) and located in the region Xq12 to Xq13.3.  相似文献   

6.
We recently reported a new X-linked mental retardation (XLMR) disorder in a four-generation family of Dutch descent. Features included Dandy-Walker malformation, basal ganglia disease, and seizures. Twenty-six family members, including two living affected males and two obligate carriers, were available for study. No evidence of linkage was observed between the disease locus and RFLPs from several X-chromosome regions, including Xp21-p22 (13 markers), proximal Xq (four markers), and Xq28 (three markers). However, a new hypervariable short tandem repeat (STR) within the HPRT gene at Xq26 showed positive linkage to the disease locus, with a maximum lod score of 2.19 at a recombination fraction of 0. A second hypervariable marker in Xq26, the dinucleotide repeat XL90A3 (DXS425), showed a lod score of .84 at a recombination fraction of .11. Both the HPRT and DXS425 markers were typed in 40 CEPH families, and subsequent multipoint linkage analysis showed the following order: Xcen-DXS425-(HPRT,XLMR)-F9-qter. HPRT and these flanking markers are therefore useful for carrier detection and prenatal diagnosis in this family. This study illustrates that hypervariable STRs will be powerful tools for linkage analysis and genetic diagnosis, particularly when relatively small families are involved.  相似文献   

7.
The Coffin-Lowry syndrome (CLS) is an X-linked inherited disease of unknown pathogenesis characterized by severe mental retardation, typical facial and digital anomalies, and progressive skeletal deformations. Our previous linkage analysis, based on four pedigrees with the disease, suggested a localization for the CLS locus in Xp22.1-p22.2, with the most likely position between the marker loci DXS41 and DXS43. We have now extended the study to 16 families by using seven RFLP marker loci spanning the Xp22.1-p22.2 region. Linkage has been established with five markers from this part of the X chromosome: DXS274 (lod score [Z] (theta) = 3.53 at theta = .08), DXS43 (Z(theta) = 3.16 at theta = .08), DXS197 (Z(theta) = 3.03 at theta = .05), DXS41 (Z(theta) = 2.89 at theta = .08), and DXS207 (Z(theta) = 2.73 at theta = .13). A multipoint linkage analysis further placed, with a maximum multipoint Z of 7.30, the mutation-causing CLS within a 7-cM interval defined by the cluster of tightly linked markers (DXS207-DXS43-DXS197) on the distal side and by DXS274 on the proximal side. Thus, these further linkage data confirm and refine the map location for the gene responsible for CLS in Xp22.1-p22.2. As no linkage heterogeneity was detected, this validates the use of the Xp22.1-p22.2 markers for carrier detection and prenatal diagnosis in CLS families.  相似文献   

8.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

9.
X-linked hypohidrotic ectodermal dysplasia (H.E.D.) is a disorder of abnormal morphogenesis of ectodermal structures and is of unknown pathogenesis. Neither relatively accurate carrier detection nor prenatal diagnosis has been available. Previous localization of the disorder by linkage analysis utilizing restriction-fragment polymorphisms, by our group and others, has placed the disorder in the general pericentromeric region. We have extended our previous study by analyzing 36 families by means of 10 DNA probes at nine marker loci and have localized the disorder to the region Xq11-Xq21.1, probably Xq12-Xq13. Three loci--DXS159 (theta = .01, z = 14.84), PGK1 (theta = .02, z = 13.44), and DXS72 (theta = .02, z = 11.38)--show very close linkage to the disorder, while five other pericentromeric loci (DXS146, DXS14, DXYS1, DXYS2, and DXS3) display significant but looser linkage. Analysis of the linkage data yields no significant evidence for nonallelic heterogeneity for the X-linked form of the disorder. Both multipoint analysis and examination of multiply informative meioses with known phase establish that the locus for H.E.D. is flanked on one side by the proximal long arm loci DXYS1, DXYS2, and DXS3 and on the other side by the short arm loci DXS146 and DXS14. Multipoint mapping could not resolve the order of H.E.D. and the three tightly linked loci. This order can be inferred from published data on physical mapping of marker loci in the pericentromeric region, which have utilized somatic cell hybrid lines established from a female with severe manifestations of H.E.D., and an X/9 translocation (breakpoint Xq13.1). If one assumes that the breakpoint of the translocation is within the locus for H.E.D. and that there has not been a rearrangement in the hybrid line, then DXS159 would be proximal to the disorder and PGK1 and DXS72 would be distal to the disorder. Both accurate carrier detection and prenatal diagnosis are now feasible in a majority of families at risk for the disorder.  相似文献   

10.
OBJECTIVES: A recent linkage analysis of 360 families at high risk for prostate cancer identified the q27-28 region on chromosome X as the potential location of a gene involved in prostate cancer susceptibility. Here we report on linkage analysis at this putative HPCX locus in an independent set of 186 prostate cancer families participating in the Prostate Cancer Genetic Research Study (PROGRESS). METHODS: DNA samples from these families were genotyped at 8 polymorphic markers spanning 14.3 cM of the HPCX region. RESULTS: Two-point parametric analysis of the total data set resulted in positive lod scores at only two markers, DXS984 and DXS1193, with scores of 0.628 at a recombination fraction (theta) of 0.36 and 0.012 at theta = 0.48, respectively. The stratification of pedigrees according to the assumed mode of transmission increased the evidence of linkage at DXS984 in 81 families with no evidence of male-to-male transmission (lod = 1.062 at theta = 0.28). CONCLUSIONS: Although this analysis did not show statistically significant evidence for the linkage of prostate cancer susceptibility to Xq27-28, the results are consistent with a small percentage of families being linked to this region. The analysis further highlights difficulties in replicating linkage results in an etiologically heterogeneous, complexly inherited disease.  相似文献   

11.
X-linked hydrocephalus is a well-defined disorder which accounts for > or = 7% of hydrocephalus in males. Pathologically, the condition is characterized by stenosis or obliteration of the aqueduct of Sylvius. Previous genetic linkage studies have suggested the likelihood of genetic homogeneity for this condition, with close linkage to the DXS52 and F8C markers in Xq28. We have investigated a family with typical X-linked aqueductal stenosis, in which no linkage to these markers was present. In this family, close linkage was established to the DXS548 and FRAXA loci in Xq27.3. Our findings demonstrate that X-linked aqueductal stenosis may result from mutations at two different loci on the X chromosome. Caution is indicated in using linkage for the prenatal diagnosis of X-linked hydrocephalus.  相似文献   

12.
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and defective renal tubular function. A map assignment of OCRL to Xq24-q26 has been made previously by linkage analysis with DXS42 at Xq24-q26 (theta = 0, z = 5.09) and with DXS10 at Xq26 (theta = 0, z = 6.45). Two additional families were studied and three additional polymorphisms were identified at DXS42 by using a 35-kb sequence isolated with the probe detecting the original polymorphism at DXS42. With additional OCRL families made informative for DXS42, theta remained 0 with z = 6.63; and for DXS10 theta = 0.03 and z = 7.07. Evidence for placing OCRL at Xq25 also comes from a female with Lowe syndrome and an X;3 translocation. We have used the Xq25 breakpoint in this patient to determine the position of OCRL relative to the two linked markers. Each derivative chromosome was isolated away from its normal counterpart in somatic cell hybrids. DXS42 was mapped to the derivative chromosome X containing Xpterq25, and DXS10 was mapped to the derivative chromosome 3 containing Xq25-qter. The markers DXS10 and DXS42 therefore show tight linkage with OCRL in six families and flank the Xq25 breakpoint in a female patient with an X;3 translocation. Linkage analysis with flanking markers was used to assess OCRL carrier status in women at risk. Results, when compared with carrier determination by ophthalmologic examination, indicated that the slit-lamp exam can be a sensitive and specific method of carrier determination in many cases.  相似文献   

13.
The AMELX gene located at Xp22.1-p22.3 encodes for the enamel protein amelogenin and has been implicated as the gene responsible for the inherited dental abnormality X-linked amelogenesis imperfecta (XAI). Three families with XAI have been investigated using polymorphic DNA markers flanking the position of AMELX. Using two-point linkage analysis, linkage was established between XAI and several of these markers in two families, with a combined lod score of 6.05 for DXS16 at theta = 0.04. This supports the involvement of AMELX, located close to DXS16, in the XAI disease process (AIH1) in those families. Using multipoint linkage analysis, the combined maximum lod score for these two families was 7.30 for a location of AIH1 at 2 cM distal to DXS16. The support interval around this location extended about 8 cM proximal to DXS92, and the AIH1 location could not be precisely defined by multipoint mapping. Study of recombination events indicated that AIH1 lies in the interval between DXS143 and DXS85. There was significant evidence against linkage to this region in the third family, indicating locus heterogeneity in XAI. Further analysis with markers on the long arm of the X chromosome showed evidence of linkage to DXS144E and F9 with no recombination with either of these markers. Two-point analysis gave a peak lod score at DXS144E with a maximum lod score of 2.83 at theta = 0, with a peak lod score in multipoint linkage analysis of 2.84 at theta = 0. The support interval extended 9 cM proximal to DXS144E and 14 cM distal to F9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We describe two highly polymorphic microsatellite AC repeat sequences, VK23AC and VK14AC, which are closely linked to the fragile X at Xq27.3. Both VK23AC (DXS297) and VK14AC (DXS292) are proximal to the fragile site. Two-point linkage analysis in 31 fragile X families gave (a) a recombination frequency of 1% (range 0.00%-4%) with a maximum lod score of 32.04 for DXS297 and (b) a recombination frequency of 7% (range of 3%-15%) with a maximum lod score of 12.87 for DXS292. Both of these polymorphisms are applicable to diagnosis by linkage in families with fragile X syndrome. A multipoint linkage map of genetic markers at Xq27.3 was constructed from genotyping these polymorphisms in the CEPH pedigrees. The DXS292 marker is in the DXS98-DXS297 interval and in 3 cM proximal to DXS297.  相似文献   

15.
Linkage of the gene responsible for an X-linked early onset parkinsonism disorder with mental retardation (McKusick 311510) to DNA probes that detect restriction fragment length polymorphisms is described. The disease gene is linked to the F8C gene, and to DNA probes detecting polymorphic loci DXS52, DXS15, DXS134, and DXS374 with maximum lod scores at theta = 0 of 5.08, 5.19, 5.00, 5.03, and 4.46, respectively. Multipoint linkage analysis gives a maximum multipoint lod score of 6.75 at the F8C gene. This places the disease gene in chromosomal region Xq27.3-qter.  相似文献   

16.
Choroideremia (McK30310), an X-linked hereditary retinal dystrophy, causes night-blindness, progressive peripheral visual field loss, and, ultimately, central blindness in affected males. The location of choroideremia on the X chromosome is unknown. We have used restriction fragment length polymorphisms from the X chromosome to determine the regional localization of choroideremia by linkage analysis in families with this disease. One such polymorphic locus, DXYS1, located on the long arm (Xq) within bands q13-q21, shows no recombination with choroideremia at lod = 5.78. Therefore, with 90% probability, choroideremia maps within 9 centiMorgans (cM) of DXYS1. Another polymorphic locus, DXS11, located within Xq24-q26, also shows no recombination with choroideremia, although at a smaller lod score of 1.54 (90% probability limit theta less than 30 cM). This linkage with DXS11, a marker that is distal to DXYS1, suggests that the locus for choroideremia is also distal to DXYS1 and lies between these two markers in the region Xq13-q24. These results provide regional mapping for the disease that may be useful for prenatal diagnosis and, perhaps ultimately, for isolating the gene locus for choroideremia.  相似文献   

17.
In a large German family with Emery-Dreifuss muscular dystrophy (EDMD) linkage analysis was performed using the factor IX gene (F9), the factor VIII:C gene (F8), the anonymous DNA probe DXS52, and DXS15 as markers. Tight linkage was found between the EDMD locus and the F8 probe (Zmax = 1.19; theta max = 0.00), DXS15 (Zmax = 1.75; theta max = 0.00) and DXS52 (Zmax = 2.26; theta max = 0.00). Weak linkage was found to F9 (Zmax = 0.02; theta max = 0.43). The data from the literature and our results suggest that the gene locus of EDMD is close to F8 (confidence interval theta = 0-0.07). The new linkage data are useful for carrier detection and diagnosis of EDMD patients before onset of major clinical signs.  相似文献   

18.
Linkage localization of X-linked Charcot-Marie-Tooth disease.   总被引:7,自引:3,他引:4  
Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neuropathy, is a heterogeneous group of slowly progressive, degenerative disorders of peripheral nerve. X-linked CMT (CMTX) (McKusick 302800), a subdivision of type I, or demyelinating, CMT is an X-linked dominant condition with variable penetrance. Previous linkage analysis using RFLPs demonstrated linkage to markers on the proximal long and short arms of the X chromosome, with the more likely localization on the proximal long arm of the X chromosome. Available variable simple-sequence repeats (VSSRs) broaden the possibilities for linkage analysis. This paper presents new linkage data and recombination analysis derived from work with four VSSR markers--AR, PGKP1, DXS453, and DXYS1X--in addition to analysis using RFLP markers described elsewhere. These studies localize the CMTX gene to the proximal Xq segment between PGKP1 (Xq11.2-12) and DXS72 (Xq21.1), with a combined maximum multipoint lod score of 15.3 at DXS453 (theta = 0).  相似文献   

19.
X-linked Amelogenesis imperfecta (AI) is a genetic disorder affecting the formation of enamel. In the present study two families, one with X-linked dominant and one with X-linked recessive AI, were studied by linkage analysis. Eleven cloned RFLP markers of known regional location were used. Evidence was obtained for linkage between the AI locus and the marker p782, defining the locus DXS85 at Xp22, by using two-point analysis. No recombination was scored between these two loci in 15 informative meioses, and a peak lod score (Zmax) of 4.45 was calculated at zero recombination fraction. Recombination was observed between the more distal locus DXS89 and AI, giving a peak lod score of 3.41 at a recombination fraction of .09. Recombination was also observed between the AI locus and the more proximal loci DXS43 and DXS41 (Zmax = 0.09 at theta max = 0.31 and Zmax = 0.61 at theta max = 0.28, respectively). Absence of linkage was observed between the AI locus and seven other loci, located proximal to DXS41 or on the long arm of the X chromosome. On the basis of two-point linkage analysis and analysis of crossover events, we propose the following order of loci at Xp22: DXS89-(AI, DXS85)-DXS43-DXS41-Xcen.  相似文献   

20.
X-linked liver glycogenosis (XLG) is a glycogenosis due to deficient activity of phosphorylase kinase (PHK) in liver. PHK consists of four different subunits, alpha, beta, gamma, and delta. Although it is unknown whether liver and muscle PHK subunits are encoded by the same genes, the muscle alpha subunit (PHKA) gene was a likely candidate gene for the mutation responsible for this X-linked liver glycogenosis as it was assigned to the X chromosome at q12-q13. Linkage analysis with X-chromosomal polymorphic DNA markers was performed in two families segregating XLG. First, multipoint linkage analysis excluded the muscle PHKA region as the site of the XLG mutation. Second, evidence was obtained for linkage between the XLG locus and DXS197, DXS43, DXS16, and DXS9 with two-point peak lod scores Zmax = 6.64, 3.75, 1.30, and 0.88, all at theta max = 0.00, respectively. Multipoint linkage results and analysis of recombinational events indicated that the mutation responsible for XLG is located in Xp22 between DXS143 and DXS41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号