首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
荒漠地表生物土壤结皮形成与演替特征概述   总被引:11,自引:0,他引:11  
张元明  王雪芹 《生态学报》2010,30(16):4484-4492
土壤表面结皮是世界范围内干旱沙漠地区土壤表面广泛存在的自然现象,包括物理结皮和生物土壤结皮两大类型。其中,生物土壤结皮作为干旱沙漠地区特殊环境的产物,是由细菌、真菌、蓝绿藻、地衣和苔藓植物与土壤形成的有机复合体。它的形成使土壤表面在物理、化学和生物学特性上均明显不同于松散沙土,具有较强的抗风蚀功能和重要的生态效应,成为干旱沙漠地区植被演替的重要基础。随着形成生物土壤结皮的物种更替,维持结皮结构的主要胶结方式亦随之发生变化,即由胞外多糖的粘结作用逐渐转变为蓝藻和荒漠藻的藻丝体、地衣菌丝体以及苔藓植物假根的缠绕和捆绑作用,物种更替是结皮微结构和胶结方式转化的生物基础。生物土壤结皮的形成通常可以分为以下几个阶段:生物土壤结皮的早期阶段(土壤酶和土壤微生物),藻结皮阶段、地衣结皮阶段和苔藓结皮阶段。即随着土壤微生物在沙土表面的生长,随后出现丝状蓝藻和荒漠藻类植物,形成以藻类植物为主体的荒漠藻结皮;当土壤表面得到一定固定后,便开始出现地衣和苔藓植物,形成以地衣和苔藓植物为优势的生物结皮类型。其中,前一阶段的完成又为后一阶段的开始提供良好的环境条件。当环境条件适宜时,生物土壤结皮也可以不经历其中某个阶段而直接发育到更高级的阶段。  相似文献   

2.
污水净化湿地模拟系统中细菌和藻类的生态分布研究   总被引:10,自引:0,他引:10  
陈博谦  尹澄清 《生态学报》1998,18(6):634-639
以湿地土壤-微生物模拟系统为基础,研究了细菌和藻类在不同处理单元中的生态分布和种类变化。随着系统中微生物的净化作用,污水中污染物浓度下降,污染负荷降低,细菌和藻类的种类和数量也发生相应的变化。系统中,藻类种类由耐污种类向喜清种类过渡,显示了藻类是良好的水质评价和监测的指示生物。细菌总量降低,第4单元中的细菌总量比第1单元要低2个数量级。Margalef多样性指数逐渐升高,第1单元为0.38,第2单元为0.60,第3单元为0.69,第4单元为0.87。系统中的反硝化率在第2单元处最高,在第4单元处最低,垂直分布以2cm深度处最高。  相似文献   

3.
Isolation and properties of fungi that lyse blue-green algae.   总被引:3,自引:0,他引:3  
Of 70 pure microbial cultures isolated from aquatic habitats, soil, and air according to the ability to lyse live blue-green algae, 62 were fungi representing the genera Acremonium, Emericellopsis, and Verticillium. Algal-lysing fungi were isolated from all habitat types sampled. The remaining isolates comprised four bacteria and four streptomycetes. All isolates lysed Anabaena flos-aquae and, in most cases, several other filamentous and unicellular blue-green algae. The fungi generally showed greater activity than most other isolates towards a wider range of susceptible algae, including green algae in some cases. Acremonium and Emericellopsis isolates, but not Verticillium, also inhibited the growth of blue-green algae and gram-positive bacteria, but did not lyse the latter. Lysis of blue green algae by Acremonium and Emericellopsis spp. was associated with the formation of diffusible heat-stable extracellular factors which, evidence suggests, could be cephalosporin antibiotic(s). Blue-green algae were also lysed by pure cephalosporin C. The frequent isolation of lytic fungi from algal habitats suggests a possible natural algal-destroying role for such fungi, which might be exploitable for algal bloom control.  相似文献   

4.
Isolation and properties of fungi that lyse blue-green algae.   总被引:3,自引:2,他引:1       下载免费PDF全文
Of 70 pure microbial cultures isolated from aquatic habitats, soil, and air according to the ability to lyse live blue-green algae, 62 were fungi representing the genera Acremonium, Emericellopsis, and Verticillium. Algal-lysing fungi were isolated from all habitat types sampled. The remaining isolates comprised four bacteria and four streptomycetes. All isolates lysed Anabaena flos-aquae and, in most cases, several other filamentous and unicellular blue-green algae. The fungi generally showed greater activity than most other isolates towards a wider range of susceptible algae, including green algae in some cases. Acremonium and Emericellopsis isolates, but not Verticillium, also inhibited the growth of blue-green algae and gram-positive bacteria, but did not lyse the latter. Lysis of blue green algae by Acremonium and Emericellopsis spp. was associated with the formation of diffusible heat-stable extracellular factors which, evidence suggests, could be cephalosporin antibiotic(s). Blue-green algae were also lysed by pure cephalosporin C. The frequent isolation of lytic fungi from algal habitats suggests a possible natural algal-destroying role for such fungi, which might be exploitable for algal bloom control.  相似文献   

5.
Microbial community composition (cyanobacteria and eukaryotic microalgae abundance and diversity, bacterial abundance, and soil respiration) was studied in subglacial and periglacial habitats on five glaciers near Ny-Alesund, Svalbard (79 degrees N). Soil microbial communities from nonvegetated sites (subglacial, recently deglaciated, and cryoconite sediments) and sites with plant cover (deglaciated some hundreds of years ago) were analyzed. Physicochemical analyses (pH, texture, water content, organic matter, total C and N content) were also performed on the samples. In total, 57 taxa of 23 genera of cyanobacteriaand algae were identified. Algae from the class Chlorophyceae (25 species) and cyanobacteria (23 species) were richest in biodiversity. The numbers of identified species in single habitat types were 23 in subglacial, 39 inbarren, 22 in cryoconite, and 24 in vegetated soils. The highest cyanobacterial and algal biovolume and cell numbers, respectively, were present in cryoconite (13x10(4) microm3 mg-1 soil and 508 cells per mg of soil), followed by barren (5.7x10(4) and 188), vegetated (2.6x10(4) and 120), and subglacial (0.1x10(4) and 5) soils. Cyanobacteria prevailed in all soil samples. Algae (mainly green algae) were present only as accessory organisms. The density of bacteria showed a slightly different trend to that of the cyanobacterial and algal assemblages. The highest number of bacteria was present in vegetated (mean: 13,722x10(8) cells per mg of soil dry wt.), followed by cryoconite (3802x10(8)), barren (654x10(8)), and subglacial (78x10(8)) soils. Response of cyanobacteria and algae to physical parameters showed that soil texture and water content are important for biomass development. In addition, it is shown that nitrogen and water content are the main factors affecting bacterial abundance and overall soil respiration. Redundancy analysis (RDA) with forward selection was used to create a model explaining variability in cyanobacterial, algal, and bacterial abundance. Cryoconites accounted for most of the variation in cyanobacteria and algae biovolume, followed by barren soils. Oscillatoriales, desmids, and green coccoid algae preferred cryoconites, whereas Nostocales and Chroococcales occurred mostly in barren soils. From the data obtained, it is evident that of the studied habitats cryoconite sediments are the most suitable ones for the development of microbial assemblages. Although subglacial sediments do not provide as good conditions as cryoconites, they support the survival of microbial communities. Both mentioned habitats are potential sources for the microbial recolonization of freshly deglaciated soil after the glacier retreat.  相似文献   

6.
生物结皮影响下的土壤有机质分异特征   总被引:23,自引:4,他引:23  
张元明  杨维康  王雪芹  张道远 《生态学报》2005,25(12):3420-3425
对新疆古尔班通古特沙漠生物结皮影响下的土壤有机质分异特征进行了定量研究。结果表明,该沙漠典型沙垄不同部位具有不同的土壤有机质特征,且土壤有机质含量具有明显的分层特征。无论是结皮覆盖区还是非覆盖区,土壤有机质的积累均以表层0~5cm土层为主,由表及里呈递减趋势。这种地表有机质分布的规律在该沙漠地表普遍存在。虽然如此,生物结皮却强烈影响着地表0~5cm土层有机质的含量的积累,它的存在使得该层有机质含量极显著地高于无结皮覆盖区0~5cm土层的有机质含量(t检验,p<0.01),表明生物结皮能显著增加地表0~5cm土层的有机质含量;而无论结皮覆盖区还是非结皮覆盖区,两者5~10cm土层之间和10~30cm土层之间的有机质含量无显著差异(t检验,p>0.05),说明生物结皮对土壤有机质含量的影响范围仅限于表层0~5cm,对更深层次土壤的有机质含量则无显著影响。  相似文献   

7.
Depending on the chemical and physical environment, algae and heterotrophic bacteria in stream periphyton communities likely engage in both positive and negative interactions. We tested the hypothesis that bacteria are more closely associated with algae when allochthonous sources of labile DOC are low and algae are not light limited. Secondly, we tested the hypothesis that, under extremely oligotrophic conditions, bacteria will out-compete algae for inorganic nutrients if their carbon requirements are met by allochthonous sources. Experiments were carried out using in situ light manipulations and nutrient diffusing substrates (releasing inorganic nutrients and /or glucose) in Harts Run, an oligotrophic stream located in north central Kentucky. Although we found that both algal and bacterial biomass were higher under ambient light, bacteria did not respond to glucose in the dark. This may indicate that bacteria were associated with algae not as a carbon source, but as a substrate for colonization. In the nutrient × glucose manipulation, we found that bacteria were co-limited by inorganic nutrients. There was no evidence of algae being negatively affected by competition with bacteria for nitrogen and phosphorus. Although low temperatures might have played a role in preventing inorganic nutrient competition between these two groups of organisms, the results of both experiments may indicate that the quantitative link between periphytic bacteria and algae is stronger under oligotrophic conditions.  相似文献   

8.
Dissolved organic carbon (DOC) constitutes the bulk of organic carbon in aquatic environments. The importance of DOC utilization by mixotrophic algae is unclear since heterotrophic bacteria are regarded as more efficient users. We tested the hypothesis that algae decrease the DOC concentration in the light to lower levels than in darkness resulting in competitive exclusion of heterotrophic bacteria according to the mechanistic competition theory. We investigated (a) the uptake kinetics of glucose as a model substrate by two cultured algae and mixed bacteria populations, (b) the competition for glucose between algae and bacteria in chemostats, (c) the effect of discontinuous glucose supply in chemostats, and (d) the minimum glucose concentrations achieved in cultures of algae and bacteria. Bacteria showed higher specific‐glucose‐uptake rates than algae. In chemostats, algae became extinct in the dark and coexisted in the light where they decreased bacteria to lower densities. Discontinuous glucose supply promoted the algae compared to continuous substrate addition. Several algae consumed glucose to lower concentrations in the dark than in the light and showed lower or equal residual glucose concentrations than bacteria. Residual concentrations were not related to allometric traits (cell volume) and photosynthetic potential (chl content). Overall, the hypothesis was not supported, and mechanisms of competition for DOC obviously differed from those for particulate prey. However, since some algae showed lower or equal residual glucose concentrations than bacteria, algal dark uptake of DOC may be important in deep layers of many waters.  相似文献   

9.
Soil microbial populations after wildfire   总被引:3,自引:0,他引:3  
Abstract Population fluctuations were increased by burning, which also modified the incubation patterns and the densities of several microbial groups, although without changing the order of their population sizes. In the short term, fire produced a sharp increase in microbes but affected the groups studied differently. Aerobic heterotrophic bacteria, including the acidophilic and sporulating ones, were stimulated by fire while cyanobacteria, algae and fungi (propagules as well as hyphae length) were clearly depressed. In the long term, the positive effect of fire on bacteria was nullified except on the sporulating ones; fungal propagules, but not mycelium, reached the unburned soil values, cyanobacteria and algae also increased. Soil incubation both improved the beneficial and diminished the negative fire effect on the microbiota.  相似文献   

10.
The summarized results of original studies, carried out in 1988-2003 by scientists of the Gamaleya Research Institute of Epidemiology and Microbiology, are discussed. The part dealing with the regularity and mechanisms of the circulation of pathogenic bacteria in the biocenosis of soil and water reservoirs includes the following subjects: population and intracellular interactions with protozoa; the evaluation of different representatives of hydrobios as hosts and the transmission along trophic biocenotic chains; the effect of algae and their metabolic products on bacterial populations; the possibility of the colonization of higher plants from the soil and the subsequent infection of rodents; the variability and clonal structure of bacterial population in its interaction with protozoa and plants; the chain of Yersinia circulation in agrocenosis. The part dealing with the mechanisms of the prolonged reservation of causative agents includes such subjects as the reversible transition of bacteria into the latent (uncultivable) state in soils and water reservoirs, as well as the biological inductors of this process; the prolonged preservation of latent bacteria in the cysts of protozoa and blue-green algae; the indication of causative agents in the natural foci of plague and pseudotuberculosis. On the basis of the original investigations and the data of literature new theoretical review in the field of the natural foci and the epidemiology of sapronotic infections have been formulated.  相似文献   

11.
Technique for Measuring 14CO2 Uptake by Soil Microorganisms In Situ   总被引:12,自引:10,他引:2       下载免费PDF全文
Uptake of 14CO2 in soils due to algae or sulfur-oxidizing bacteria was examined by incubation of soil samples with gaseous 14CO2 and subsequent chemical oxidation of biologically fixed radioactive isotope to 14CO2 for detection with a liquid scintillation counting system. The 14CO2 was added to the soil in the gas phase so that no alteration of the moisture or ionic strength of the soil occurred. Wet oxidation of radioactive organic matter was carried out in sealed ampoules, and the 14CO2 produced was transferred to a phenethylamine-liquid scintillation counting system with a simply constructed apparatus. The technique is inexpensive and efficient and does not require elaborate traps since several possible interfering factors were found to have no harmful effects. Experiments in coal mine regions and in geothermal habitats have demonstrated the ecological applicability of this technique for measurement of CO2 fixation by sulfur-oxidizing bacteria and soil algae.  相似文献   

12.
藻类和苔藓植物是荒漠植被演替过程中常见的两类先锋植物,同时也是生物结皮中生物量最大的2个类群。该文综述了近年来干旱半干旱荒漠地区生物结皮中藻类和苔藓两大类植物区系及其生态作用的研究进展,重点介绍藻类结皮、苔藓结皮的生态作用以及二者之间存在的生态学关系。在此基础上对荒漠生物结皮中藻类与苔藓植物的研究前景进行了展望,指出荒漠生物结皮中藻类与苔藓共生机理的探讨是未来的研究重点,这对进一步探明生物结皮中藻类和苔藓植物之间的相互作用,揭示它们的生态学关系具有重要的理论意义和实践价值。  相似文献   

13.
溶藻细菌的功能多样性及其菌剂应用   总被引:1,自引:0,他引:1  
溶藻细菌(algicidal bacteria)是一种以直接或间接方式杀灭藻细胞或抑制其生长的细菌.本文聚焦溶藻细菌的应用研究现状,从溶藻菌剂的类型、搭配策略、应用形式与场景等角度综述了 5个门78个属的溶藻细菌以及7个门56个属的目标藻类的研究进展.总结发现Bacillus spp.、Streptomyces spp...  相似文献   

14.
Commensalism based on organic carbon supplied by phytoplanktonand competition for mineral nutrients are important interactionsbetween bacteria and phytoplankton in oligotrophic clear-watersystems. Both interactions are influenced by zooplankton activity.To examine the relation ship between algae and bacteria in LakeLa Caldera, we studied: the correlations among phyto plankton,bacteria and phosphorus (P) dynamics; the ratio of organic carbonsupplied by algae to organic carbon demand by bacteria; andthe importance of P remineralized by metazooplankton for bothcommunities. Phytoplankton and bacteria had a similar seasonaldynamics, and there was a sig nificant and positive relationshipbetween bacterial abundance and algal biomass (P<0.01). However,the release of organic carbon from phytoplankton was usuallyhigher than the bacterioplankton carbon requirement. P availablevia zooplankton remineralization satisfied between 74 and 316%of the minimum P demands of algae and bacteria. To elucidatewhether zooplankton operate similarly on algae and bacterialgrowth or indirectly influence bacterial growth through phytoplanktonmetab olism, we performed zooplankton manipulation experiments.High zooplankton biomass in these experiments stimulated bothprimary and bacterial production, but release of organic carbonfrom phytoplankton declined. These results suggest a directstimulus of bacterial growth, so algae and bac teria can balancegrazing losses by compensatory growth. Further, the algal decreaseof the organic carbon supply for bacteria could, over time,lead to a change in the algae-bacteria interaction from competitionto commensalism. This reduction in organic carbon excretioncould affect the balance of the competitive interaction.  相似文献   

15.
Propanil (3′,4′-dichloropropionanilide) was a potent inhibitor of the nitrogenase activity of blue-green algae (cyanobacteria) in flooded soil, but the herbicide at comparable concentrations was not toxic to rice, protozoa, and nitrogen-fixing bacteria. Ethanol-amended flooded soils treated with propanil exhibited higher rates of nitrogenase activity than those not treated with the herbicide. The enhanced nitrogenase activity in propanil-treated soils was associated with a rise in the population of purple sulfur bacteria, especially of cells resembling Chromatium and Thiospirillum. By employing propanil and a means of excluding light from the floodwater to prevent the development of phototrophs during rice growth under lowland conditions, the relative activities of blue-green algae, photosynthetic bacteria, and the rhizosphere microflora were determined. The results suggest that the potential contribution of photosynthetic bacteria may be quite high.  相似文献   

16.
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the “nature of current research data on terrestrial algae,” “methodological approaches,” “diversity,” “environmental relationships,” “ecological roles,” and “economic significance.” The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.  相似文献   

17.
In planktonic ecosystems, algae and bacteria exhibit complex interrelationships, as algae provide an important organic matter source for microbial growth while microbial metabolism recycles limiting nutrients for algae in a loose commensalism. However, algae and bacteria can also compete for available nutrients if supplies of organic matter are sufficient to satisfy bacterial demand. We developed a stoichiometrically explicit model of bacteria–algae interactions that incorporated realistic assumptions about algal light and nutrient utilization, algal exudation of organic matter, and bacterial processing of organic matter and nutrients. The model makes specific predictions about how the relative balance of algae and bacteria should change in response to varied nutrient and light availability seen in lakes and oceans. The model successfully reproduces published empirical data and indicates that, under moderate nutrient supply, the bacterial percentage of total respiration should be maximal at intermediate light intensity.  相似文献   

18.
A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers.  相似文献   

19.
Paracoccus and Rhodopseudomonas are unusual among bacteria in having a majority of the biochemical features of mitochondria; blue-green algae have many of the features of chloroplasts. The theory of serial endosymbiosis proposes that a primitive eukaryote successively took up bacteria and blue-green algae to yield mitochondria and chloroplasts respectively. Possible characteristics of transitional forms are indicated both by the primitive amoeba, Pelomyxa, which lacks mitochondria but contains a permanent population of endosymbiotic bacteria, and by several anomalous eukaryotic algae, e.g. Cyanophora, which contain cyanelles instead of chloroplasts. Blue-green algae appear to be obvious precursors of red algal chloroplasts but the ancestry of other chloroplasts is less certain, though the epizoic symbiont, Prochloron, may resemble the ancestral green algal chloroplast. We speculate that the chloroplasts of the remaining algae may have been a eukaryotic origin. The evolution or organelles from endosymbiotic precursors would involve their integration with the host cell biochemically, structurally and numerically.  相似文献   

20.
荒漠生物结皮中藻类和苔藓植物研究进展   总被引:11,自引:0,他引:11  
藻类和苔藓植物是荒漠植被演替过程中常见的两类先锋植物, 同时也是生物结皮中生物量最大的2个类群。该文综述了近年来干旱半干旱荒漠地区生物结皮中藻类和苔藓两大类植物区系及其生态作用的研究进展, 重点介绍藻类结皮、苔藓结皮的生态作用以及二者之间存在的生态学关系。在此基础上对荒漠生物结皮中藻类与苔藓植物的研究前景进行了展望, 指出荒漠生物结皮中藻类与苔藓共生机理的探讨是未来的研究重点, 这对进一步探明生物结皮中藻类和苔藓植物之间的相互作用, 揭示它们的生态学关系具有重要的理论意义和实践价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号