首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
藏中矿区重金属污染土壤的微生物活性变化   总被引:11,自引:0,他引:11  
微生物几乎参与土壤中的一切生物及生物化学反应,土壤微生物活性可较敏感地反映土壤中生化反应的方向和强度,是探讨重金属污染生态效应的有效途径之一。通过野外调查与采样和室内分析,研究了藏中矿区重金属污染对土壤酶活性、基础呼吸、代谢商(qCO2)和可矿化N的影响。结果表明,矿区土壤受重金属Cu、Zn、Pb、Cd不同程度污染,使得土壤酶活性、可矿化N受到抑制,基础呼吸和qCO2则受到刺激。逐步多元回归分析表明,在Cu、Zn、Pb、Cd复合污染条件下,矿区土壤重金属复合污染对土壤微生物活性的影响是复杂的;主成分分析表明,土壤总体微生物活性指标能较好地反映拉屋矿区土壤重金属复合污染状况,可作为藏中矿区土壤环境质量评价及量化分类的有效指标。  相似文献   

2.
红壤酶活性与肥力的关系   总被引:37,自引:6,他引:31  
对供试红壤的基本化学性质、微生物量以及酶活性进行分析.结果表明,红壤脲酶、蔗糖酶、磷酸酶及过氧化氢酶与土壤有机碳、全氮及全磷显著相关或极显著相关,这些酶活性反映了红壤肥力水平的差异.土壤酶活性聚类分析结果与根据土壤化学、生物学性质所得结果基本相似.酶活性可用于评价红壤肥力质量.新鲜土样的酶活性不仅高于风干土样,且与土壤肥力质量联系更为密切.  相似文献   

3.
Persistence of Denitrifying Enzyme Activity in Dried Soils   总被引:8,自引:2,他引:6       下载免费PDF全文
The effects of air drying soil on denitrifying enzyme activity, denitrifier numbers, and rates of N gas loss from soil cores were measured. Only 29 and 16% of the initial denitrifying enzyme activity in fresh, near field capacity samples of Maury and Donerail soils, respectively, were lost after 7 days of air drying. The denitrifying activity of bacteria added to soil and activity recently formed in situ were not stable during drying. When dried and moist soil cores were irrigated, evolution of N gas began, and it maximized sooner in the dried cores. This suggests that the persistence of denitrifying enzymes permits accelerated denitrification when dried soils are remoistened. Enzyme activity increased significantly in these waterlogged cores, but fluctuations in enzyme activity were small compared with fluctuations in actual denitrification rate, and enzyme activities were always greater than denitrification rates. Apparent numbers of isolatable denitrifiers (most-probable-number counts) decreased more than enzyme activity as the soils were dried, but after the soils were rewetted, the extent of apparent growth was not consistently related to the magnitude of N loss. We hypothesize that activation-inactivation of existing enzymes by soil O2 is of greater significance in transient denitrification events than is growth of denitrifiers or synthesis of new enzymes.  相似文献   

4.
宫川蜜柑根际土壤酶活性与土壤养分含量相关性的研究   总被引:4,自引:0,他引:4  
研究了不同肥力水平的宫川蜜柑根际土壤酶的活性及其与土壤农化特性的关系。结果表明 :高产园的土壤酶活性显著高于低产园的土壤酶活性。经统计分析 ,土壤酶活性与养分含量均呈极显著相关。而且酶的活性在土壤中的分布有一定的规律性。其水平分布是在树冠内半径的 4 /5处至树冠滴水线范围内 ,酶的活性最高 ,由此处向内向外酶的活性逐渐降低 ;其垂直分布是 0~ 2 0 cm土层酶的活性最高 ,随土层的加深而逐渐降低  相似文献   

5.
李影  陈明林 《生态学报》2010,30(21):5949-5957
通过盆栽模拟栽培试验,研究了节节草生长对铜尾矿砂重金属形态转化和土壤酶活性的影响。结果表明,节节草生长显著提高了尾矿砂中有机物结合态重金属比例(P0.01),降低了交换态和残渣态重金属比例(P0.05)。土壤过氧化氢酶、脲酶、多酚氧化酶和蔗糖酶活性均随着节节草的生长而不同程度的升高,其中过氧化氢酶和脲酶活性均与植物生长时间呈显著正相关(r过氧化氢酶=0.911,P0.05;r脲酶=0.957,P0.01),多酚氧化酶和蔗糖酶活性在植物生长旺盛期达到峰值,分别是对照组的2.40和2.02倍,随后迅速下降;而磷酸酶活性却显著下降(r磷酸酶=-0.923,P0.05)。土壤酶活性与节节草地下部分干重的相关性大于地上部分;且与土壤有机物结合态重金属的含量呈显著正相关,与交换态和残渣态重金属含量呈显著负相关。节节草生长不仅促进了铜尾矿砂重金属朝螯合态方面转化,有效降低重金属的生物有效性,同时还显著地改善了铜尾矿砂的基质环境和土壤肥力。因此,节节草在铜尾矿废弃地恢复实践中具有较大的应用潜力。  相似文献   

6.
邱权  李吉跃  王军辉  王宁  孙奎  何茜  苏艳  潘昕 《生态学报》2014,34(24):7411-7420
西宁南山区植被退化情况严重,人工造林植被恢复被看作是最有效的恢复手段,其中选择合适造林树种尤为关键。选择人工种植的唐古特白刺Nitraria tangutorum、柠条Caragana korshinskii、西北小蘗Berberis vernae和短叶锦鸡儿Caragana brevifolia共4种灌木树种造林试验区为研究对象,通过测定根际和非根际土壤微生物数量、酶活性及养分含量,综合比较种植4种灌木树种根际和非根际土壤肥力差异,科学评价其对土壤的改善效果。研究表明:(1)土壤微生物数量和酶活性总体呈现出根际高于非根际的规律,仅放线菌数量和脲酶活性出现了根际低于非根际现象。(2)土壤养分方面,4种灌木根际土壤和非根际土壤p H值、全N、全P、全K含量差异不显著,有机质、有效P、速效K含量均呈现出根际非根际,而碱解N则是根际非根际。(3)土壤酶活性与土壤微生物数量相关性不显著,土壤有机质含量与土壤细菌、真菌数量呈极显著正相关,有效P含量与土壤细菌、真菌和放线菌数量呈极显著正相关,速效K含量与过氧化氢酶、酸性磷酸酶活性呈显著正相关,全N、碱解N含量均与脲酶活性呈显著正相关。(4)从土壤肥力综合水平来看,根际非根际,其中根际土壤中西北小蘗柠条短叶锦鸡儿唐古特白刺,研究结果表明西北小蘗和柠条能大幅提高土壤肥力,改良土壤效果较好。  相似文献   

7.
According to the resource allocation model for extracellular enzyme synthesis, microorganisms should preferentially allocate their resources to phosphorus (P)-acquiring enzyme synthesis when P availability is low in soils. However, the validity of this model across different soil types and soils differing in their microbial community composition has not been well demonstrated. Here we investigated whether the resource allocation model for phosphatase synthesis is applicable across different soil types (Andosols, Acrisols, Cambisols, and Fluvisols) and land uses (arable and forest), and we examined which soil test P and/or P fraction microorganisms responded to when investing their resources in phosphatase synthesis in the soils. The ratio of alkaline phosphatase (ALP) to β-d-glucosidase (BG) activities in the arable soils and the ratio of acid phosphatase (ACP) to BG activities in the forest soils were significantly negatively related with the available inorganic P concentration. We also observed significant effects of available inorganic P, pH, soil types, and land uses on the (ACP + ALP)/BG ratio when the data for the arable and forest soils were combined and used in a stepwise multiple regression analysis. These results suggest that microbial resource allocation for phosphatase synthesis is primarily controlled by available inorganic P concentration and soil pH, but the effects of soil types and land uses are also significant.  相似文献   

8.
Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N‐acetyl glucosaminidase, β‐glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N‐limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situβ‐glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N‐limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition.  相似文献   

9.
刘秉儒  牛宋芳  张文文 《生态学报》2019,39(24):9171-9178
柠条(Caragana korshinskii)是荒漠草原区主要的造林绿化树种,研究其根际土壤微生物和酶活性与不同土壤类型土壤粒径组成的关系有重要意义,然而土壤粒径对荒漠草原柠条根际土壤微生物数量和酶活性的影响知之甚少,探讨土壤颗粒组分与微生物数量、土壤酶活性之间的关系,以及土壤颗粒组成对荒漠草原区固沙灌木植物柠条根际土壤微生物数量及酶活性的影响,可为揭示荒漠草原土壤退化及生态修复提供参考。以宁夏荒漠草原区土壤粒径组成差异显著的灰钙土、红黏土、风沙土环境下栽植的柠条为研究对象,研究不同土壤颗粒组成对根际土壤微生物数量及酶活性的相互关系与影响。结果表明:土壤微生物的数量表现为细菌放线菌真菌。根际土壤中的细菌、真菌数量显著高于非根际,且在3种不同类型的土壤中随着细砂粒的增多,真菌和放线菌数量逐渐降低,而细菌数量呈先增大后减小的趋势;根际与非根际土壤的蔗糖酶、碱性磷酸酶及过氧化氢酶活性均呈现出灰钙土红黏土风沙土的趋势,红黏土根际土壤中的脲酶活性显著高于灰钙土与风沙土;除过氧化氢酶外,土壤酶活性表现为根际高于非根际,在3种不同类型的土壤中随着细砂含量的增加,土壤酶活性均呈递减趋势。土壤颗粒组成与微生物数量之间没有明显的相关性,而与土壤酶活性之间显著相关,土壤酶活性与黏粒、粉粒呈正相关,与细砂、中砂呈负相关关系,根际土壤中酶活性更高,能够为植物及微生物提供更多的营养。  相似文献   

10.
铜尾矿污染区土壤酶活性研究   总被引:30,自引:3,他引:27  
滕应  黄昌勇  龙健  姚槐应  刘方 《应用生态学报》2003,14(11):1976-1980
对浙江省哩浦铜尾矿污染区土壤酶活性进行了研究,结果表明,尾矿区及其周边土壤环境受到不同程度的Cu、Zn、Pb、Cd污染,从尾矿库中心到外围重金属污染程度逐渐减轻,而土壤酶活性则不断提高,其中以脱氢酶和脲酶活性增加最明显,回归分析表明,单一脱氢酶、脲酶、酸性磷酸酶以及蛋白酶活性与重金属复合元素含量之间存在显著线性关系,主成分分析结果显示,尾矿区土壤酶信息系统的第一、二主成分方差贡献率之和达98.24%,以第一、二主成分建立了两个土壤总体酶活性指标,并用此指标对各供试样本进行空间分类,其结果与以重金属含量为依据的划分结果基本吻合,可见,采用酶活性构筑的土壤信息系统的总体酶活性来表征矿区土壤的重金属污染状况是可行的。  相似文献   

11.
The objectives of our research were to assess the soil enzyme activities in relation with soil physicochemical and oxide minerals in the coastal agroecosystem of Puducherry region, India. Soils from nine farms in organic (ORG), sustainable (SUS), and conventional (CON) farming were sampled. Organically managed farming system soils contain significantly higher amounts of soil total N, organic carbon, and a higher level of microbial biomass C and N. Urease, protease, β-glucosidase, cellulose, saccharase, xylanase, and alkaline phosphatase enzyme activities were higher in organic farming system soils compared to sustainable and conventional farming soils. In addition, silt, clay, Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, and P2O5 oxides were higher in organic farming soil and they showed a significant positive correlation with soil enzyme activities. Our study revealed that soil enzyme activities and soil minerals were significantly affected by farm management practices. The organic farming system had improved the soil health, enzyme activities, and plant available nutrients in coastal agro-ecosystem.  相似文献   

12.
In most ecosystems, the degradation of complex organic material depends on extracellular enzymes produced by microbes. These enzymes can exist in bound or free form within the soil, but the dynamics of these different enzyme pools remain uncertain. To address this uncertainty, I determined rates of enzyme turnover in a volcanic soil with and without added enzymes. I also tested whether or not soil minerals and humic acids would alter enzyme activity. In soils that were gamma-irradiated to stop enzyme production, 35–70% of the enzyme activity was stable throughout the 21-day incubation. The remaining enzyme fraction decayed at rates ranging from − 0.032 to − 0.628 day−1. In both the irradiated soils and in soils with added enzymes, addition of the mineral allophane had a strong positive effect on most enzyme activities. Another added mineral, ferrihydrite, had a weak positive effect on some enzymes. Added humic acids strongly inhibited enzyme activity. These findings suggest that minerals, especially allophane, enhance potential enzyme activities in young volcanic soils. However, the actual activity and function of these enzymes may be low under field conditions if stabilization results in less efficient enzyme-substrate interactions. If this is the case, then much of the measured enzyme activity in bulk soil may be stabilized but unlikely to contribute greatly to ecosystem processes.  相似文献   

13.
张静  高云华  张池  周波  李静娟  杨小雪  许欢  戴军 《生态学杂志》2013,24(12):3423-3430
以我国华南地区典型坡地的赤红壤为对象,研究了不同土地利用方式(新垦旱地、灌木林、桉树林及果园)下土壤微生物性状、酶活性及其与土壤肥力的关系.结果表明: 不同土地利用方式下土壤生物学性质差异极显著.其中,果园土壤的微生物数量和酶活性显著增加;新垦旱地土壤的呼吸速率显著增加,微生物数量、酶活性显著下降;灌木林和桉树林则介于果园和新垦旱地之间,且两者具有高度的相似性.不同土地利用方式下的土壤微生物数量和酶活性与土壤有机碳、大部分养分之间存在显著正相关;高有机质含量和高肥力水平的土壤有利于微生物的生长和酶活性的提高.  相似文献   

14.
杨树人工林品种更替连作与非更替连作根际效应的比较   总被引:4,自引:0,他引:4  
采用空间位移法对杨树人工林更替连作和非更替连作两种经营模式下土壤养分、土壤酶活性和土壤微生物的根际效应进行了比较研究,以期探明不同连作经营模式对杨树人工林土壤生态环境的影响,探讨品种更替对杨树人工林地力维持的生态效果。研究结果表明,更替连作和非更替连作均导致杨树人工林土壤发生不同程度的衰退,非更替连作导致的林地土壤衰退现象更为严重。杨树根际和非根际土壤养分在非更替连作中下降最为显著,土壤有机质的根际效应显著大于更替连作,而土壤速效N、P、K的根际效应在更替连作中显著增大。非更替连作导致根际和非根际土壤中过氧化氢酶、脲酶和碱性磷酸酶活性发生较大幅度的下降,而多酚氧化酶和过氧化物酶活性较大幅度的上升;更替连作也导致土壤酶活性有类似的变化趋势,但下降(上升)幅度远小于非更替连作,土壤酶活性的根际效应总体呈现非更替连作变化幅度强于品种更替连作的趋势。两种连作模式下土壤中可培养土壤微生物的数量变化大致呈现一致趋势,连作将导致根际和非根际土壤微生物数量整体下降,其中土壤细菌比例有所降低,真菌比例上升,土壤呈现从细菌型向真菌型转化的特点,非更替连作对土壤微生物的根际效应明显大于更替连作。更替连作和非更替连作根际效应的差异可能由不同杨树品种根系分泌物的差异所导致。  相似文献   

15.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

16.
宁南山区典型植物根际与非根际土壤微生物功能多样性   总被引:8,自引:0,他引:8  
安韶山  李国辉  陈利顶 《生态学报》2011,31(18):5225-5234
选择宁南山区9种典型植物的根际与非根际土壤为研究对象,采用Biolog方法对土壤微生物功能多样性进行了研究。结果表明:9种不同植物根际土壤与非根际土壤的微生物活性(AWCD)、微生物多样性指数和微生物均匀度指数均存在明显差异;除冰草外,其他各种植物的根际土壤的微生物活性AWCD、微生物多样性指数和微生物均匀度指数均比非根际土壤的高;9种典型植物根际土壤微生物主要碳源利用类型是羧酸类和氨基酸类,非根际土壤微生物主要碳源利用类型是羧酸类、胺类、氨基酸类;微生物活性、微生物多样性指数和微生物均匀度指数两两之间均达到了极显著相关,与土壤化学性质各指标之间均未达到显著相关水平。  相似文献   

17.
The decomposition of soil organic matter is mediated by extracellular enzymes. The aim of this work was to identify the factors determining the activity and size of the mobile fraction of extracellular enzymes (laccase, Mn-peroxidase, endocellulase, cellobiohydrolase, ??-glucosidase, endoxylanase, ??-xylosidase, ??-glucosidase, chitinase, arylsulfatase, phosphatase, phosphodiesterase, alanine and leucine aminopeptidase) using a set of soils covering a wide range of physico-chemical properties. Organic matter content had a major effect on enzyme activity both in forest and grassland soils, while the effects of pH and humic compounds content were only important in forest soils, and the molecular mass of humic compounds and Ca content were only important in grasslands. Specific enzyme activity was either comparable between the soil types or higher in grasslands. With the exception of Mn-peroxidase and ??-glucosidase, the specific activities of all enzymes in arable fields under tillage were similar to those in grasslands. Mobility differed among the enzymes and ranged from <1% for arylsulfatase and phosphodiesterase up to 20?C40% for ??-glucosidase and aminopeptidases, with pH being the most important variable. These results demonstrate that the factors regulating enzyme activity are likely to be different in forest soils and grasslands and that enzyme mobility is a characteristic feature of each individual enzyme.  相似文献   

18.
Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features.  相似文献   

19.
Biochar (a carbon-rich product from pyrolysis of organic materials) additions to agricultural soils have been shown to often result in neutral to positive influences on soil properties and processes; however, the only a limited number of studies have been conducted on active organic farming systems and of those, none have used multivariate analytical methods to examine the influence of biochar on soil microbial activity, nutrient cycling, and crop performance. In this study, biochar produced from local timber harvest residues on Waldron Island, WA was applied in factorial combination with a poultry litter based fertilizer to replicated plots on six organic farms that were all growing Kabocha squash (Cucurbita maxima) in the summer of 2016. A series of soil physicochemical and biochemical properties were examined after 5 months of biochar application; squash samples were evaluated for productivity and nutrient uptake. Factorial multivariate analysis of variance (MANOVA) revealed a significant influence of biochar on soil properties as well as a synergistic effect of biochar and poultry litter during a 5 month field trial. Principle component analysis (PCA) highlighted soil total C content, microbial biomass C, enzyme activities, bioavailable P, and phosphatase enzyme activity as the variables most influenced by biochar incorporation into surface mineral soil. Redundancy analysis (RDA) further indicated that better soil biochemical conditions, particularly soil enzyme activities and available P concentrations, were associated with higher crop productivity in biochar-treated plots. Overall, our study demonstrates that locally produced wood biochar, in addition to improving soil C storage, has the potential to significantly improve soil fertility and crop productivity in organic farming systems on sandy soils.  相似文献   

20.
The relative activities of soil enzymes involved in mineralizing organic carbon (C), nitrogen (N), and phosphorus (P) reveal stoichiometric and energetic constraints on microbial biomass growth. Although tropical forests and grasslands are a major component of the global C cycle, the effects of soil nutrient availability on microbial activity and C dynamics in these ecosystems are poorly understood. To explore potential microbial nutrient limitation in relation to enzyme allocation in low latitude ecosystems, we performed a meta-analysis of acid/alkaline phosphatase (AP), β-1,4-glucosidase (BG), and β-1,4-N-acetyl-glucosaminidase (NAG) activities in tropical soils. We found that BG:AP and NAG:AP ratios in tropical soils are significantly lower than those of temperate ecosystems overall. The lowest BG:AP and NAG:AP ratios were associated with old or acid soils, consistent with greater biological phosphorus demand relative to P availability. Additionally, correlations between enzyme activities and mean annual temperature and precipitation suggest some climatic regulation of microbial enzyme allocation in tropical soils. We used the results of our analysis in conjunction with previously published data on soil and biomass C:N:P stoichiometry to parameterize a biogeochemical equilibrium model that relates microbial growth efficiency to extracellular enzyme activity. The model predicts low microbial growth efficiencies in P-limited soils, indicating that P availability may influence C cycling in the highly weathered soils that underlie many tropical ecosystems. Therefore, we suggest that P availability be included in models that simulate microbial enzyme allocation, biomass growth, and C mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号