首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Muscodor cinnamomi was selected and investigated for its in vitro ability to produce indole-3-acetic acid (IAA) to solubilize different toxic metal (Ca, Co, Cd, Cu, Pb, Zn)-containing insoluble minerals and tolerance to metals, herbicides and an insecticide. The results indicated that this fungus is able to produce IAA (45.36 ± 2.40 μg ml−1) in liquid media. This phytohormone stimulated coleoptile elongation, and increased seed germination and root elongation of tested plants. The metal tolerance and solubilizing ability depended on the type of insoluble minerals. M. cinnamomi showed the highest growth tolerance on Ca-containing media at 150 mM, followed by Zn-containing media at 100 mM and Cd-containing media at 10 mM. This fungus tolerated the three herbicides (2,4-d-dimethylammonium, glyphosate and paraquat dichloride) and an insecticide (methomyl) at the recommended dosages for field application. Moreover, M. cinnamomi completely controlled Rhizoctonia solani AG-2 root rot in tomato plants, and increased root length, shoot dry weight and root dry weight. This is the first report of in vitro IAA production, solubilization of insoluble metal minerals, and tolerance to herbicides, an insecticide and metals as well as the plant growth promoting ability of M. cinnamomi.  相似文献   

2.
Molecular techniques employing 16S rDNA profiles generated by PCR-DGGE were used to detect changes in bacterial community structures of the rhizosphere of avocado trees during infection by Phytophthora cinnamomi and during repeated bioaugmentation with a disease suppressive fluorescent pseudomonad. When the 16S rDNA profiles were analyzed by multivariate analysis procedures, distinct microbial communities were shown to occur on healthy and infected roots. Bacterial communities from healthy roots were represented by simple DNA banding profiles, suggestive of colonization by a few predominant species, and were approximately 80% similar in structure. In contrast, roots that were infected with Phytophthora, but which did not yet show visible symptoms of disease, were colonized by much more variable bacterial communities that had significantly different community structures from those of healthy roots. Root samples from trees receiving repeated applications of the disease suppressive bacterium Pseudomonas fluorescens st. 513 were free of Phytophthora infection, and had bacterial community structures that were similar to those of nontreated healthy roots. Sequence analysis of clones generated from four predominant bands cut from the DGGE gels revealed the presence of pseudomonads, as well as several previously unidentified bacteria. Differentiation of 16S rDNA profiles for healthy and infected roots suggests that rhizosphere bacterial community structure may serve as an integrative indicator of changes in chemical and biological conditions in the plant rhizosphere during the infection process.  相似文献   

3.
植物根际促生菌对3种土传真菌病害病原的抑制作用   总被引:2,自引:0,他引:2       下载免费PDF全文
孙广正  姚拓  刘婷  卢虎 《微生物学通报》2014,41(11):2293-2300
【目的】获取促生同时可防治3种土传真菌病害(Fusarium oxysporum、Sclerotinia sclerotiorum和Rhizoctonia solani)的生防菌,并明确其抑菌效果。【方法】利用前期研究获得的17株促生菌,采用平板对峙法测定其对病原真菌的拮抗作用及对菌丝生长的抑制作用。【结果】可有效拮抗立枯丝核菌的生防菌有6株,其中促生菌株FX2和LM4-3的抑制率达73.82%;拮抗尖孢镰刀菌的生防菌有7株,其中FX2的抑制率达到66.81%;拮抗油菜菌核病菌的生防菌有4株,其中菌株LHS11的抑制率高达85.71%。菌株LHS11和JM170通过次生代谢物抑制病原真菌。所有的生防菌对病原菌的菌丝生长均有一定的抑制作用。【结论】筛选得到对3种真菌病害病原具有较好生防作用的菌株LHS11和FX2。  相似文献   

4.
《BMJ (Clinical research ed.)》1897,2(1908):227-228
  相似文献   

5.
6.
7.
Infection by a Drechslera sp. (perfect stage, Pyrenophora chaetomioides (Speg.)), isolated from Bromus sterilis , killed B. sterilis , B. commutatus and B. secalinus. B. diandrus and B. hordeaceus were both infected but not killed. Successful infection required a 24-h dew period. Reduction of the dew period to 8 h significantly reduced the infection of all Bromus spp. tested as determined by leaf necrosis. Inoculation with a low inoculum concentration (2 104 conidia/ml) produced little dry weight reduction, but at 2 105 conidia/ml with an 8-h dew period the dry weights of B. commutatus , B. diandrus , B. secalinus and B. sterilis were reduced by 11-25%. Extending the dew period to 24 h resulted in 77% mortality of B. sterilis and 93% mortality of B. commutatus and B. secalinus.  相似文献   

8.
Plant diseases, caused by various microorganisms, including viruses, bacteria, fungi, protozoa and nematodes, affect agricultural practices and result in significant crop losses. Fungal pathogens are the major cause of plant diseases and infect most plants. Agrochemicals play a significant role in plant disease management to ensure a sustainable and productive agricultural system. However, the intensive use of chemicals has adverse effects on humans and ecosystem functioning and also reduces agricultural sustainability. A sustainable agriculture is achieved through reduction or elimination of fertilizers and agrochemicals, resulting in minimal impact to the environment. Recently, the use of antagonistic endophytes as biocontrol agents is drawing special attention as an attractive option for management of some plant diseases, resulting in minimal impact to the environment. Endophytes that resides asymptomatically within a plant, have the potential to provide a source of candidate strains for potential biocontrol applications. This review addresses biocontrol methods using endophytic fungi such as Colletotrichum, Cladosporium, Fusarium, Pestalotiopsis and Trichoderma species as an attractive option for management of some plant diseases. Potential endophytes are screened in vitro and in vivo to test their antagonistic actions by different mechanisms, including mycoparasitism, production of lytic enzymes and/or antibiotics and induction of plant defenses. Currently, efforts are being made to commercialize these biocontrol agents. A continued research pipeline consisting of screening, in vitro and in vivo testing, biomass production and commercialization of endophytes as biocontrol agents may contribute to sustainable agriculture.  相似文献   

9.
Valdensinia heterodoxa (Sclerotiniacae) is a potential fungal bioherbicide for control of salal (Gaultheria shallon). The effect of culture media, substrates and relative humidity (RH) on growth, sporulation and conidial discharge of V. heterodoxa was determined for two isolates PFC2761 and PFC3027 in vitro. Culture media significantly affected the growth, sporulation, and conidial discharge of V. heterodoxa. Of eight agar media used, colony radial growth was optimal on salal oatmeal agar and salal potato dextrose agar for isolates PFC2761 and PFC3027, respectively; whereas sporulation was at an optimum on salal oatmeal agar for both isolates. Of the eight liquid media tested, mycelial production was highest on wheat bran–salal–potato dextrose broth. Growth on solid substrates greatly stimulated sporulation and conidial discharge of V. heterodoxa. Of the 12 solid substrates used, the greatest numbers of discharged conidia were observed from wheat bran and wheat bran–salal within 14 d of sporulation. Sporulation on solid substrates continued for 42 d. RH significantly affected the sporulation and conidial discharge for both isolates across all solid substrates tested. No conidia were produced or discharged below 93 % RH on wheat bran–salal and millet. With an increase of the RH from 93 to 97 %, sporulation and the number of discharged conidia increased significantly for both isolates on wheat bran–salal, but not on millet.  相似文献   

10.
The adventitious shoots in three populations of Cirsium arvense in sheep-grazed pastures were treated in October (spring) 1991 with a mycelium/wheat formulation of Sclerotinia sclerotiorum and the fates of mapped shoots were followed over the growing season. In untreated plots, deaths through natural causes were compensated for by births (emergence of new shoots above the soil) throughout the growing season, but, on plots treated with S. sclerotiorum, deaths from the induced disease exceeded births for 35 days following treatment, causing the shoot population to decline markedly. Disease-induced deaths occurred only among shoots present at the time of treatment; there was no evidence of transfer of the pathogen to shoots emerging after the treatment was applied. A life-table analysis showed that only 8% of the adventitious shoots emerging during the growing season survived to seeding on treated plots, compared with 28% on the untreated plots; most mortalities occurred in shoots at the vegetative stage of development. The dry mass of propagative roots in autumn was reduced to 35% of that on the untreated plots by the pathogen and the density of shoots emerging the following spring was reduced to a similar extent. The results of this study indicate that S. sclerotiorum has potential as a mycoherbicide for C. arvense in sheep-grazed pasture in New Zealand.  相似文献   

11.
12.
A theoretical analysis was conducted to investigate the dynamics of plant-pathogen interactions for biological weed control. Computer simulation showed that the dynamics of plant-pathogen interactions can be determined by the properties of the pathogen. Pathogens with high levels of virulence may exist in nature in low frequencies due to high extinction rates. Pathogens of this type are suitable for the mycoherbicide strategy. Pathogens with a low level of virulence are frequent and may coexist stably with their host. Good candidates for the classical strategy may be the pathogens with intermediate pathogenicity, which maintain a stable interaction and a high control efficiency. The probability of extinction of a pathogen increases when pathogenicity is greater than a critical value at the intermediate range. The regulation of plant populations through reducing host reproductivity and increasing host mortality has similar results.  相似文献   

13.
Summary Formulations which are economical and which can deliver a viable organism are critical to developing successful biocontrol products for plant pathogens. In the present study, alginates derived from commercial kelp and produced byAzotobacter vinelandii isolates ATCC 9104 and 12 837 were compared in their ability to form stable, biodegradable granular formulations of the biocontrol fungiTalaromyces flavus andGliocladium virens. Bacteria were grown in shake flask cultures (180 rpm) at 32°C for 104 h. The cultures were monitored for pH, dissolved oxygen, glucose concentration, dry cell weight, and alginate dry weight. Aqueous solutions of the bacterial alginates, as well as the kelp-derived alginate products, gelled readily in 0.25 M calcium chloride. Mannuronate (M) and guluronate (G) compositions of the alginate samples were determined by circular dichroism. M/G ratios for cultures of isolate 12837 averaged 0.98±0.18; for isolate 9104, 1.59±0.12; and for kelp, 1.54±0.39. The viability ofT. flavus in the kelp and bacterial alginate formulations were similar over 84 days. An exploratory experiment indicated good viability ofG. virens using the same bacterial alginates. This study demonstrated a practical use for bacterial alginate as a potentially less costly substitute for kelp alginate in the preparation of biocontrol agent formulations.  相似文献   

14.
15.
16.
17.
Mycocentrospora acerina (Hartig) Deighton can kill or suppress the growth of Viola arvensis (Murr.) in spring wheat in pot-grown plants in both glasshouse and outdoor studies. The level of damage to V. arvensis and the effect on its competition with wheat were affected by inoculum density and environmental conditions. High inoculum density (105 macroconidia/ml) caused high mortality in V. arvensis and eliminated its competitive effect on wheat. At a lower density (104 macroconidia/ml), the V. arvensis fresh weight and its competition with the wheat were suppressed by up to 38 and 28% respectively, depending on environmental conditions.  相似文献   

18.
19.
The ecological role of soil streptomycetes within the plant root environment is currently gaining increased attention. This review describes our recent advances in elucidating the complex interactions between streptomycetes, plants, pathogenic and symbiotic microorganisms. Streptomycetes play diverse roles in plant-associated microbial communities. Some act as biocontrol agents, inhibiting plant interactions with pathogenic organisms. Owing to the antagonistic properties of streptomycetes, they exert a selective pressure on soil microbes, which may not always be for plant benefit. Others promote the formation of symbioses between plant roots and microbes, and this is in part due to their direct positive influence on the symbiotic partner, expressed as, e.g., promotion of hyphal elongation of symbiotic fungi. Recently, streptomycetes have been identified as modulators of plant defence. By repressing plant responses to pathogens they facilitate root colonisation with pathogenic fungi. In contrast, other strains induce local and systemic resistance against pathogens or enhance plant growth. In conclusion, while streptomycetes have a clear potential of acting as biocontrol agents, care has to be taken to avoid strains that select for virulent pathogens or enhance disease development. We argue towards the use of an integrated screening approach in the search for efficient biocontrol agents, including assays on in vitro antagonism, plant growth, and disease suppression.  相似文献   

20.
Ginseng (Panax ginseng C.A. Meyer) is known for its therapeutically useful ginsenosides that have anticancer and other pharmacological effects. However, its low levels in plants and the high costs of chemical synthesis make ginsenosides commercially non-viable; as such, strategies for increasing ginsenoside yield are of great interest. The present study reports the isolation of eight novel endophytic bacteria from ginseng leaves, the highest ginsenoside concentration of microbial transformed strain was identified as Paenibacillus polymyxa. Inoculation of ginseng plants with P. polymyxa by foliar application combined with irrigation enhanced plant growth parameters, reduced morbidity, and increased plant concentration of the ginsenosides (Rg1, Re, Rf, Rb1, Rg2, Rb2, Rb3, and Rd) in field experiments. These results indicate that P. polymyxa isolated from ginseng is a beneficial endophytic bacterium with biocontrol properties that can enhance the yield and quality of this medicinal plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号