首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pentitols and insulin release by isolated rat islets of Langerhans   总被引:7,自引:13,他引:7       下载免费PDF全文
1. Insulin secretion was studied in isolated islets of Langerhans obtained by collagenase digestion of rat pancreas. In addition to responding to glucose and mannose as do whole pancreas and pancreas slices in vitro, isolated rat islets also secrete insulin in response to xylitol, ribitol and ribose, but not to sorbitol, mannitol, arabitol, xylose or arabinose. 2. Xylitol and ribitol readily reduce NAD(+) when added to a preparation of ultrasonically treated islets. 3. Adrenaline (1mum) inhibits the effects of glucose and xylitol on insulin release. Mannoheptulose and 2-deoxy-glucose, however, inhibit the response to glucose but not that to xylitol. 4. The intracellular concentration of glucose 6-phosphate is increased when islets are incubated with glucose but not with xylitol, suggesting that xylitol does not promote insulin release by conversion into glucose 6-phosphate. 5. Theophylline (5mm) potentiates the effect of 20mm-glucose on insulin release from isolated rat islets of Langerhans, but has no effect on xylitol-mediated release. These results indicate that xylitol does not stimulate insulin release by alterations in the intracellular concentrations of cyclic AMP. 6. A possible role for the metabolism of hexoses via the pentose phosphate pathway in the stimulation of insulin release is discussed.  相似文献   

2.
Insulin release was studied in vivo in the chicken using the radioimmunoassay previously described (Simon, Freychet and Rosselin 1974). An orally administered glucose load (2 g/kg b.w.) stimulated insulin release and was rapidly metabolized. A prolonged fasting period (65 hr) increased both initial plasma glucose and initial plasma insulin levels and highly impaired the glucose tolerance. A fasting-impaired insulin release and/or a fasting tissue "insulin resistance" accounted for this fasting-impaired glucose tolerance. An orally administered amino acid mixture (1 g/kg b.w.) stimulated insulin release to a very low extent. The effect was however sufficient to decrease the plasma glucose level. In combination with glucose, the oral amino acid load potentiated the effect of a dose of glucose on insulin release and highly improved the glucose tolerance. This synergism was still observed with the intake of a mixed and balanced diet. Therefore, except for some characteristics observed in the chicken which are discussed, the insulin regulation and the pancreatic beta-cell function are qualitatively similar in the chicken and in mammals.  相似文献   

3.
beta-Cell-rich pancreatic islets were microdissected from ob/ob-mice and used for studies of 45Ca uptake and washout. Irrespective of whether the experiments were performed at 21 or 37 degrees C both glucose and phosphate stimulated the net uptake of lanthanum-nondisplaceable 45Ca. The stimulatory effect of phosphate was additive to that produced by glucose. 45Ca incorporated in response to phosphate differed from that taken up in the presence of 20 mM glucose in being easily washed out although it was not affected by the glucose concentration of the washing medium. The efflux of 45Ca was reduced after introducing phosphate into a medium used to perifuse islets which had accumulated 45Ca in response to 20 mM glucose. This suggests that the outward calcium transport can be influenced also by intracellular trapping of the cation. The glucose-stimulated insulin release was inhibited by phosphate; an effect reversed by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. It is concluded that a common effect of glucose and phosphate is to trap calcium in the pancreatic beta-cells but that there are fundamental differences between their effects on intracellular distribution of calcium and on insulin release.  相似文献   

4.
Glyceraldehyde phosphate, a glycolytic intermediate, and succinic acid (as its methyl ester to make it permeable to the cell), a citric acid cycle intermediate, were the only glucose metabolites of many recently tested that stimulated insulin release. The effects of these two "new" insulin secretagogues on several pancreatic islet parameters were compared. Glyceraldehyde phosphate stimulated all of the insulin it released during the first 5 min after islets were exposed to it, and its maximum effect on calcium uptake was observed at 5 min. Monomethyl succinate stimulated insulin release mostly during the last 30 min of a 1-h incubation and its maximum effect on calcium uptake was at 60 min after it was applied to islets. Monomethyl succinate-induced insulin release, but not glyceraldehyde phosphate-induced insulin release, was inhibited by metabolic inhibitors (antimycin A, rotenone, cyanide, FCCP, fluoride, and iodoacetamide). This is consistent with the idea that monomethyl succinate is hydrolyzed to succinate which is metabolized intramitochondrially. The effects of glyceraldehyde suggest that glucose signals the first phase of insulin release by an agonist-like mechanism that originates in the cytosol and requires minimal energy. The effects of monomethyl succinate suggest that the signal for the second phase of glucose-induced insulin release originates in the mitochondrion and requires a large amount of energy.  相似文献   

5.
The effects of vanadate (Na3VO4) on pancreatic B-cell function were studied in normal mouse islets. Vanadate did not affect basal insulin release but potentiated the effect of 7-30 mM glucose at concentrations of 0.1-1 mM. This effect was progressive and slowly reversible. It was abolished by omission of extracellular Ca2+ but unaffected by blockers of adrenergic or muscarinic receptors. Comparison of the changes in membrane potential, 86Rb efflux and 45Ca efflux that vanadate and ouabain produced in B-cells made it possible to exclude the hypothesis that vanadate increases insulin release by blocking the sodium pump. Vanadate was also without effect on cAMP levels. On the other hand, it markedly changed the characteristics of the Ca(2+)-dependent electrical activity and of the oscillations of cytoplasmic Ca2+ recorded in B-cells stimulated by 15 mM glucose. In the steady state, Ca2+ influx was increased by vanadate, and this resulted in a rise in cytoplasmic Ca2+. The exact mechanisms underlying these changes could not be established but a blockade of K channels was excluded. In the presence of LiCl, vanadate markedly increased inositol phosphate levels in islet cells. This effect was attenuated but not suppressed by omission of Ca2+. A small increase in inositol bisphosphate was still produced by vanadate in the absence of LiCl. These results suggest that vanadate both stimulates phosphoinositide breakdown and inhibits inositol phosphate degradation. In conclusion, vanadate does not induce insulin release, but markedly potentiates the stimulation by glucose. This property is not due to an inhibition of the sodium pump or to a rise in cAMP concentration. It results from a complex interplay between changes in B-cell membrane potential, phosphoinositide metabolism and Ca2+ handling.  相似文献   

6.
The mechanisms by which arginine-vasopressin (AVP) affects pancreatic B-cell function were studied in normal mouse islets. AVP produced a dose-dependent (0.1-1000 nM; EC50 approximately 1-2 nM) amplification of glucose-induced insulin release. This amplification was of slow onset and reversibility. AVP was ineffective when the concentration of glucose was less than 7 mM, but was still very effective in 30 mM glucose. The increase in insulin release produced by AVP was accompanied by small accelerations of 86Rb and 45Ca efflux from islet cells. Omission of extracellular Ca2+ accentuated the effect of AVP on 86Rb efflux, attenuated that on 45Ca efflux, and abolished that on release. Under no condition did AVP inhibit 86Rb efflux. AVP did not significantly affect cAMP levels, but increased inositol phosphate levels in islet cells, even in the absence of extracellular Ca2+. AVP did not affect the membrane potential in unstimulated B-cells and augmented glucose-induced electrical activity only slightly. This was not due to a direct action on ATP-sensitive K+ channels as revealed by patch-clamp recordings (whole cell and outside-out patches). In conclusion, AVP is not an initiator of insulin release, but it potently amplifies glucose-induced insulin release in normal mouse B-cells. This effect involves a stimulation of phosphoinositide metabolism, and presumably an activation of protein kinase C, rather than a change in cAMP levels or a direct control of the membrane potential.  相似文献   

7.
β-Cell-rich pancreatic islets were microdissected from ob/ob-mice and used for studies of 45Ca uptake and washout. Irrespective of whether the experiments were performed at 21 or 37°C both glucose and phosphate stimulated the net uptake of lanthanum-nondisplaceable 45Ca. The stimulatory effect of phosphate was additive to that produced by glucose. 45Ca incorporated in response to phosphate differed from that taken up in the presence of 20 mM glucose in being easily washed out although it was not affected by the glucose concentration of the washing medium. The efflux of 45Ca was reduced after introducing phosphate into a medium used to perifuse islets which had accumulated 45Ca in response to 20 mM glucose. This suggests that the outward calcium transport can be influenced also by intracellular trapping of the cation. The glucose-stimulated insulin release was inhibited by phosphate; an effect reversed by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. It is concluded that a common effect of glucose and phosphate is to trap calcium in the pancreatic β-cells but that there are fundamental differences between their effects on intracellular distribution of calcium and on insulin release.  相似文献   

8.
In order to elucidate the possible role of C-kinase in exaggerated insulin release in pregnancy, the effects of phorbol ester TPA and a C-kinase inhibitor H-7 were investigated using the isolated perfused pancreas from nonpregnant and pregnant rats. At the termination of perfusion, the insulin content of the perfused pancreas was determined to estimate insulin biosynthesis. Insulin release from the perfused pancreas was markedly augmented by 20 nM TPA in the presence of 4.4 mM glucose in pregnant rats, but not in nonpregnant rats. When glucose concentrations in the perfusate were raised to 16.7 mM, insulin release from the perfused pancreas was profoundly enhanced in pregnant rats. TPA further augmented insulin release, but the insulin content was not affected by TPA. In contrast to the considerable effect of TPA in the presence of 4.4 mM glucose, the potentiating effect of TPA on insulin release was rather weaker in pregnant than in non-pregnant rats in the presence of 16.7 mM glucose. The release of insulin induced by 16.7 mM glucose was inhibited by the addition of 100 microM H-7 in nonpregnant rats, whereas insulin release from pregnant rat pancreases was not altered. Thus, the effect of TPA and H-7 on insulin release can be more clearly observed in the beta-cells of nonpregnant rats than those of pregnant ones when maximal concentrations of glucose are used as a stimulant. Exaggerated insulin release caused by glucose in pregnancy may be due to already fully activated C-kinase in the beta-cells.  相似文献   

9.
Type 2 diabetes mellitus (T2DM) is characterized by the inability of the pancreatic β-cells to secrete enough insulin to meet the demands of the body. Therefore, research of potential therapeutic approaches to treat T2DM has focused on increasing insulin output from β-cells or improving systemic sensitivity to circulating insulin. In this study, we examined the role of the A(1) receptor in glucose homeostasis with the use of A(1) receptor knockout mice (A(1)R(-/-)). A(1)R(-/-) mice exhibited superior glucose tolerance compared with wild-type controls. However, glucose-stimulated insulin release, insulin sensitivity, weight gain, and food intake were comparable between the two genotypes. Following a glucose challenge, plasma glucagon levels in wild-type controls decreased, but this was not observed in A(1)R(-/-) mice. In addition, pancreas perfusion with oscillatory glucose levels of 10-min intervals produced a regular pattern of pulsatile insulin release with a 10-min cycling period in wild-type controls and 5 min in A(1)R(-/-) mice. When the mice were fed a high-fat diet (HFD), both genotypes exhibited impaired glucose tolerance and insulin resistance. Increased insulin release was observed in HFD-fed mice in both genotypes, but increased glucagon release was observed only in HFD-fed A(1)R(-/-) mice. In addition, the regular patterns of insulin release following oscillatory glucose perfusion were abolished in HFD-fed mice in both genotypes. In conclusion, A(1) receptors in the pancreas are involved in regulating the temporal patterns of insulin release, which could have implications in the development of glucose intolerance seen in T2DM.  相似文献   

10.
The insulinotropic action of glucose, the most potent physiologic insulin secretagogue, involves its metabolism. However, no glucose metabolite has ever been identified as a key intermediate. We tested the abilities of a number of glucose metabolites to stimulate insulin release from pancreatic islets. Of all of these metabolites, glyceraldehyde 3-phosphate was the most potent insulin secretagogue. In numerous experiments over 3 years, insulin release by 4 mM glyceraldehyde phosphate ranged from 50 to 200% of that initiated by 16.7 mM glucose--a near-maximal insulin stimulus. At concentrations of 1 and 4 mM, glyceraldehyde phosphate was even more potent than the known secretagogues glucose and glyceraldehyde. Glucose metabolites were also tested for their ability to stimulate inositol tris-, bis-, and monophosphate formation by permeabilized islets. Only glyceraldehyde phosphate stimulated inositol phosphate formation and this stimulation occurred at concentrations of glyceraldehyde phosphate which could be present in the beta cell under physiologic conditions (K0.5 = 25 microM). The current results are consistent with the idea that glyceraldehyde phosphate is a key insulinotropic glucose metabolite that might act directly (or rather directly via a receptor) on the phospholipase C that forms inositol trisphosphate in the plasma membrane.  相似文献   

11.
We combined in vitro and in vivo methods to investigate the effects of ghrelin, a novel gastric hormone, on insulin and glucagon release. Studies of isolated mouse islets showed that ghrelin concentrations in the physiological range (0.5-3 nmol l(-1)) had no effect on glucose-stimulated insulin release, while low ghrelin concentrations (1-100 pmol l(-1)) inhibited and high (0.1 and 1 micromol l(-1)) stimulated. The insulin response to glucose was enhanced in the presence of a high ghrelin concentration (100 nmol l(-1)). Glucagon release was stimulated by ghrelin (0.1 pmol l(-1) to 1 micromol l(-1)); this effect was maintained in the presence of glucose (0-20 mmol l(-1)). In intact mice, basal plasma insulin was suppressed by 1 and 10 nmol kg(-1) of ghrelin, 2 and 6 min after i.v. injection. Ghrelin (0.2-10 nmol kg(-1) i.v.) suppressed also the glucose-stimulated insulin response and impaired the glucose tolerance (at a ghrelin dose of 3.3 nmol kg(-1)). Ghrelin (1 or 10 nmol kg(-1) i.v.) inhibited the insulin response to the phospholipase C stimulating agent carbachol and enhanced the insulin response to the phosphodiesterase inhibitor isobutyl-methylxanthine (IBMX) but did not affect the response to the membrane-depolarizing amino acid l-arginine. These observations suggest that the inhibitory effect of ghrelin on glucose-induced insulin release is in part exerted on phospholipase C pathways (and not on Ca(2+)entry), while the stimulatory effect of high doses of ghrelin depends on cyclic AMP. In contrast to the spectacular glucagon-releasing effect of ghrelin in vitro, ghrelin did not raise plasma glucagon. Carbachol, IBMX and l-arginine stimulated glucagon release. These responses were impaired by ghrelin, suggesting that it suppresses the various intracellular pathways (phospholipase C, cyclic AMP and Ca(2+)), that are activated by the glucagon secretagogues. Together these observations highlight (but do not explain) the different effects of ghrelin on glucagon release in vitro and in vivo. The results show that ghrelin has powerful effects on islet cells, suggesting that endogenous ghrelin may contribute to the physiological control of insulin and glucagon release. However, the narrow "window" of circulating ghrelin concentrations makes this doubtful.  相似文献   

12.
Two experiments were conducted to examine the effect of zinc deficiency on glucose tolerance, and on blood and pancreatic insulin concentrations. In the first study, no significant differences in blood glucose or plasma insulin levels were noted between pair-weighted zinc deficient and zinc sufficient rats after an oral glucose load. In the second experiment, the concentration of pancreatic insulin in pair-fed zinc sufficient rats did not differ significantly from that of zinc deficient rats. However, a zinc deficient group fed ad libitum had significantly lower pancreatic insulin levels, suggesting that food restriction may cause increased pancreatic insulin. Thus, zinc deficiency per se had no apparent effect on oral glucose tolerance or pancreatic insulin concentrations.  相似文献   

13.
Homogenates of isolated pancreatic islets contain 40-70 times as much flavin-linked glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) as homogenates of whole pancreas, liver, heart, or skeletal muscle when the activity is assayed with either iodonitrotetrazolium or with dichloroindophenol as an electron acceptor. Intact mitochondria from islets release 3HOH from [2-3H]glycerol phosphate 7 times faster than do skeletal muscle mitochondria. The activity of the cytosolic, NAD-linked, glycerol phosphate dehydrogenase (EC 1.1.1.8) in pancreatic islets is comparable to that of the mitochondrial dehydrogenase so a glycerol phosphate shuttle is possible in pancreatic islets. Diazoxide, an inhibitor of insulin release in vivo and in vitro, inhibits the islet mitochondrial glycerol phosphate dehydrogenase in all three of the assays mentioned above at concentrations that inhibit insulin release and CO2 formation from glucose by isolated pancreatic islets. Diazoxide does not inhibit the dehydrogenase in mitochondria from skeletal muscle, liver, and heart. A slight inhibition in mitochondria from whole pancreas can be accounted for as inhibition of the islet dehydrogenase because no inhibition is observed in mitochondria from pancreas of rats treated with alloxan, an agent that causes diabetes by destroying pancreatic beta cells. The results of this study are compatible with the hypothesis that the mitochondrial glycerol phosphate dehydrogenase has a key role in stimulus-secretion coupling in the pancreatic beta cell during glucose-induced insulin release.  相似文献   

14.
The aim of this study was to evaluate the effect of insulin on the release of vWf in vivo during an oral glucose tolerance test (OGTT) performed in normal, glucose-intolerant and diabetic subjects and in vitro on human endothelial cells. Twenty-eight subjects exhibiting risk factors for diabetes underwent an OGTT: 11 subjects proved to be normal, 7 were glucose-intolerant and 10 diabetic. In each group, the vWf and PAI-1 plasmatic levels were measured at t = 0, 30 min and 180 min after the beginning of the test. Human endothelial cells from non-diabetic and diabetic subjects were incubated in the presence of human insulin at various concentrations (0.25, 2.5, 25 and 250 mUI/ml). After 1, 4, and 24 hours of incubation, the release of vWf and endothelin 1 was measured in the cell supernatant and the intracellular amount of vWf in the cell lysate. During the OGTT, the vWf levels in plasma were not affected despite a 4.5-, 6-, and 2.5-fold increase in insulin levels in normal, glucose-intolerant and diabetic subjects, respectively. Although raised in all three groups, PAI-1 plasmatic levels remained constant during the test. After 24 hours of exposure to insulin (0.25 mU/ml), the release of vWf by endothelial cells reached 35.94 +/- 23.08 % of the basal value for non-diabetic subjects, and 27.57 +/- 10.05 % for diabetic patients. Similar results were observed in non-stimulated cells. Insulin had no influence on intracellular vWf content, which remained comparable to control values. Regardless of its concentration, insulin failed to stimulate the release of vWf by endothelial cells of non-diabetic and diabetic subjects, while its ability to stimulate the release of endothelin 1 was preserved. In conclusion, hyperinsulinemia had no adverse effect on circulating vWf in normal or diabetic subjects. Neither release nor intracellular vWf content in non-diabetic or diabetic endothelial cells was influenced by insulin in vitro.  相似文献   

15.
Glucagon-like peptide-1 (GLP-1) is an incretin, which induces glucose-dependent insulin secretion. GLP-1 is rapidly degraded by dipeptidyl peptidase IV (DPPIV) after its release. We investigated whether DPPIV-deficient F344/DuCrj rats show improved glucose tolerance when compared with DPPIV-positive F344/Jcl rats. Oral glucose tolerance test indicated improved glucose tolerance in F344/DuCrj rats, but blood glucose levels of the two strains were almost the same 120 min after the glucose bolus. Valine-pyrrolidide, a DPPIV inhibitor, had no effect on the glucose tolerance of F344/DuCrj rats, but improved that of F344/Jcl rats. Enhanced insulin secretion and high plasma active GLP-1 levels were detected in an intraduodenal glucose tolerance test. Glucose tolerance is improved in DPPIV-deficient F344/DuCrj rats via enhanced insulin release mediated by high active GLP-1 levels. Our results suggest that DPPIV inhibition is a rational strategy to treat diabetic patients by improving glucose tolerance with low risk of hypoglycemia.  相似文献   

16.
The possible role of the pentose phosphate shunt in insulin release was investigated in vitro with collagenase isolated pancreatic islets of rats. Parameters measured were insulin released into the medium and measured by an immunoassay and formation of 14CO2 from glucose labeled either in the C-1 or C-6 position. The in vitro effect of the following substances was studied:
1. 1. 6-Aminonicotinamide, an antimetabolite in the synthesis of pyridine nucleotides. In islets of animals pretreated with 6-amino nicotinamide 6 h previously and in the presence of 3 mg/ml glucose in the incubation medium, 6-aminonicotinamide markedly reduced oxidation of [1-14C]glucose but did not affect that of glucose labeled in C-6. Concomitantly there was a marked decrease in insulin release. This action of 6-aminonicotinamide did not take place when it was added only to the incubation medium. Pretreatment with 6-aminonicotinamide did not change the insulin concentration of the islets, making it unlikely that it interfered with insulin synthesis. The effect of 6-aminonicotinamide is consistent with partial inhibition of the pentose shunt.
2. 2. Methylene blue: this agent was selected because it is known from studies with red blood cells that it will oxidize NADPH and thus stimulate activity of the pentose shunt. In concentrations of 0.5 and 2 μg/ml, methylene blue markedly stimulated oxidation of [1-14C]glucose but not that of C-6. Simultaneously there was a dose related decrease of insulin released.
3. 3. Pyridine nucleotides: in the absence of glucose only NADPH exhibited a significant effect of insulin release. If glucose (3 mg/ml) was present 1 or 10 mM of NAD+ or NADH exhibited a significant effect, NADP+ or NADPH were less effective. If the pentose shunt was blocked by pretreatment with 6-aminonicotinamide, all 4 pyridine nucleotides stimulated insulin release. Similarly there was an increase in oxidation of [1-14C]glucose, consitent with restimulation of the pentose shunt.
4. 4. Nicotinamide by itself exhibited a small effect; however, it was much less than the one produced by equimolar concentrations of the pyridine nucleotides.
Conclusion: Restricted availability of NADPH either less production or by fast removal leads to a decrease in glucose-induced insulin release. Pyridine nucleotides will restimulate 6-aminonicotinamide blockade insulin release and glucose oxidation by the pentose shunt. Recently it has been proposed by others that the polyol pathway may play a key role in insulin release, our data are consistent with such a hypothesis. Furthermore they do support a major role of the pentose shunt in insulin release.  相似文献   

17.
We have investigated the effect of rat leptin as well as the 22-56 fragment of this molecule on pancreatic hormone secretion in the perfused rat pancreas. In pancreases from fed rats, leptin failed to alter the insulin secretion elicited by glucose, arginine or tolbutamide, but inhibited the insulin response to both CCK-8 and carbachol, secretagogues known to act on the B-cell by increasing phospholipid turnover. This insulinostatic effect was also observed with the 22-56 leptin fragment. In pancreases obtained from 24-hour fasted rats, no effect of leptin on carbachol-induced insulin output was found, perhaps as a consequence of depressed B-cell phospholipid metabolism. Leptin did not influence glucagon or somatostatin release. Our results do not support the concept of leptin as a major regulator of B-cell function. Leptin inhibition of carbachol-induced insulin output might reflect a restraining effect of this peptide on the cholinergic stimulation of insulin release.  相似文献   

18.
The effect of the calcium-antagonist Verapamil was investigated on the blood glucose and insulin release in rats. Verapamil induced a significant elevation of the blood glucose and increased the insulin release too, however, it was not able to inhibit the glucose-induced insulin release. The authors suggest, that the effect of glucose is not restricted for the calcium turnover of the islets of the pancreas, and may be there are other cellular mechanisms apart from the effect on the calcium movements by which glucose induces insulin release.  相似文献   

19.
F344/DuCrj rats are genetically deficient in dipeptidyl peptidase IV (DPPIV). This enzyme degrades glucagon-like peptide-1 (GLP-1), which induces glucose-dependent insulin secretion. Glucose tolerance of F344/DuCrj rats is improved as a result of enhanced insulin release induced by high levels of plasma GLP-1. In this study, we fed F344/DuCrj rats and DPPIV-positive F344/Jcl rats, aged five weeks, on a high-fat (HF) diet to examine the effect of DPPIV deficiency on food intake and insulin resistance. F344/Jcl rats gained significantly more body weight and consumed significantly more food than F344/DuCrj rats from Week 4 on either control or HF diet. Glucose excursion in the oral glucose tolerance test (OGTT) was improved in F344/DuCrj rats fed on the control or HF diet at all times examined, compared with F344/Jcl rats. Homeostasis model assessment (HOMA) insulin resistance values of F344/DuCrj and F344/Jcl rats fed on HF diet were higher than those of animals fed on control diet up to Week 6. However, HOMA insulin resistance values of F344/DuCrj rats fed on HF diet became significantly lower than those of F344/Jcl rats on HF diet during Weeks 8-10. The area under the insulin curve in the OGTT at Week 10 showed that the insulin resistance of HF-diet-fed F344/DuCrj rats was greatly ameliorated. Plasma active GLP-1 concentrations of F344/DuCrj rats in the fed state were significantly higher than those of F344/Jcl rats. These observations suggest that DPPIV deficiency results in improved glucose tolerance and ameliorated insulin resistance owing to enhanced insulin release and inhibition of food intake as a result of high active GLP-1 levels.  相似文献   

20.
Glucose and fatty acid metabolism of resting skeletal muscle were studied by perfusion of the isolated rat hind leg with a hemoglobin-free medium. Tissue integrity was demonstrated by normal ATP, ADP and creatine phosphate levels, by a sufficient oxygen supply, and by a normal appearance of perfused muscle specimens under the electron microscope. The rates of glucose and fatty acid uptake, and of lactate, alanine, glycerol and fatty acid release were constant over a perfusion period of 60 min. Insulin (1 unit/l) caused a more than threefold increase in glucose uptake, a stimulation of lactate production, and a 20% increase in the muscular glycogen levels. Fatty acids and alanine release were significantly diminished by insulin, but glycerol release did not change. The uptake of oleate by the rat hind leg was dependent on the medium concentration in a range of 0.7-1.9mM oleate, and was stimulated by insulin. Glucose uptake was not influenced by oleate, whether sodium was present or not. When the leg was perfused with [1-14C]oleate, 75% of the incorporated fatty acids were found in muscle lipids, 10% were oxidized to CO2, and 5% were recovered in bone lipids. The absolute amount of oleate oxidation was not altered by insulin. In all experiments with and without glucose in the medium, 70-80% of the 14C label incorporated into muscle lipids was found in the triglyceride fraction. In the presence of glucose, insulin significantly increased the incorporation of [1-14C]oleate into muscle triglycerides, whereas no insulin effect, either on fatty acid uptake or on triglyceride formation, could be observed when glucose was omitted from the perfusate. The present results indicate that a "glucose-fatty acid cycle" as found in rat heart muscle does not operate in resting peripheral skeletal muscle tissue. They also demonstrate that the stimulating effect of insulin on muscular fatty acid uptake and triglyceride synthesis is dependent on glucose supply. This finding can be intrepreted as a stimulation of fatty acid esterification by sn-glycerol 3-phosphate derived from an increased glucose turnover, which is in turn due to insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号