首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
放牧是人类对草地进行利用的重要方式之一, 放牧影响草地生态系统的结构和功能, 改变植物光合碳(C)分配, 进而改变土壤有机碳的储存。青藏高原的高寒草甸是世界上海拔最高的草地生态系统, 寒冷季节长等独特的环境特点使其具有高的土壤有机碳含量。为了揭示长期轻度放牧对植物光合碳分配及植物光合碳在各库之间运移的影响, 基于在青藏高原矮嵩草草甸开展的长期冬季轻度放牧和围栏封育实验, 利用 13C示踪方法揭示了放牧对光合碳在植物地上、地下组织的分配以及光合碳在植物、土壤各碳库中的运移和滞留。研究结果发现, 在 13C标记之后第30天, 冬季轻度放牧样地的植物地上部分内 13C约占开始时 13C含量的32%, 根和土壤中的 13C约占22%, 植物地上部分呼吸中的 13C量约占30%。在放牧和围封这两个不同处理中, 土壤中光合碳的滞留以及光合碳随土壤呼吸释放的速率存在显著差异。长期冬季轻度放牧促使植物将更多的光合碳输入到根和土壤碳库中。与围栏封育处理相比较, 放牧处理下的 13C从植物地上部分输入到地下的速率较快, 通过土壤呼吸释放的速率也快, 而植物地上部分和植物地上部分呼吸中 13C的量较低。另外, 高寒矮嵩草草甸土壤C储量在冬季轻度放牧和围栏封育处理下没有显著差异。我们的研究表明, 尽管冬季轻度放牧改变了植物光合碳分配在地上和地下碳库中的分配, 但是没有显著影响土壤碳库储量。  相似文献   

2.
Efforts to understand the cause of 12C versus 13C isotope fractionation in plants during photosynthesis and post‐photosynthetic metabolism are frustrated by the lack of data on the intramolecular 13C‐distribution in metabolites and its variation with environmental conditions. We have exploited isotopic carbon‐13 nuclear magnetic resonance (13C NMR) spectrometry to measure the positional isotope composition (δ13Ci, ‰) in ethanol samples from different origins: European wines, liquors and sugars from C3, C4 and crassulacean acid metabolism (CAM) plants. In C3‐ethanol samples, the methylene group was always 13C‐enriched (~2‰) relative to the methyl group. In wines, this pattern was correlated with both air temperature and δ18O of wine water, indicating that water vapour deficit may be a critical defining factor. Furthermore, in C4‐ethanol, the reverse relationship was observed (methylene‐C relatively 13C‐depleted), supporting the concept that photorespiration is the key metabolic process leading to the 13C distribution in C3‐ethanol. By contrast, in CAM‐ethanol, the isotopic pattern was similar to but stronger than C3‐ethanol, with a relative 13C‐enrichment in the methylene‐C of up to 13‰. Plausible causes of this 13C‐pattern are briefly discussed. As the intramolecular δ13Ci‐values in ethanol reflect that in source glucose, our data point out the crucial impact on the ratio of metabolic pathways sustaining glucose synthesis.  相似文献   

3.
4.
The ability to concentrate CO2 around Rubisco allows C4 crops to suppress photorespiration. However, as phosphoenolpyruvate regeneration requires ATP, the energetic efficiency of the C4 pathway at low photosynthetic flux densities (PFD) becomes a balancing act between primary fixation and concentration of CO2 in mesophyll (M) cells, and CO2 reduction in bundle sheath (BS) cells. At low PFD, retro‐diffusion of CO2 from BS cells, relative to the rate of bicarbonate fixation in M cells (termed leakiness φ), is known to increase. This paper investigates whether this increase in ? could be explained by incomplete inhibition of photorespiration. The PFD response of φ was measured at various O2 partial pressures in young Zea mays plants grown at 250 (LL) and 750 µmol m?2 s?1 PFD (HL). φ increased at low PFD and was positively correlated with O2 partial pressure. Low PFD during growth caused BS conductance and interveinal distance to be lower in the LL plants, compared to the HL plants, which correlated with lower φ. Model analysis showed that incomplete inhibition of photorespiration, especially in the HL plants, and an increase in the relative contribution of mitochondrial respiration at low PFD could explain the observed increases in φ.  相似文献   

5.
Large spatial and temporal gradients in rainfall and temperature occur across Australia. This heterogeneity drives ecological differentiation in vegetation structure and ecophysiology. We examined multiple leaf‐scale traits, including foliar 13C isotope discrimination (Δ13C), rates of photosynthesis and foliar N concentration and their relationships with multiple climate variables. Fifty‐five species across 27 families were examined across eight sites spanning contrasting biomes. Key questions addressed include: (i) Does Δ13C and intrinsic water‐use efficiency (WUEi) vary with climate at a continental scale? (ii) What are the seasonal and spatial patterns in Δ13C/WUEi across biomes and species? (iii) To what extent does Δ13C reflect variation in leaf structural, functional and nutrient traits across climate gradients? and (iv) Does the relative importance of assimilation and stomatal conductance in driving variation in Δ13C differ across seasons? We found that MAP, temperature seasonality, isothermality and annual temperature range exerted independent effects on foliar Δ13C/WUEi. Temperature‐related variables exerted larger effects than rainfall‐related variables. The relative importance of photosynthesis and stomatal conductance (gs) in determining Δ13C differed across seasons: Δ13C was more strongly regulated by gs during the dry‐season and by photosynthetic capacity during the wet‐season. Δ13C was most strongly correlated, inversely, with leaf mass area ratio among all leaf attributes considered. Leaf Nmass was significantly and positively correlated with MAP during dry‐ and wet‐seasons and with moisture index (MI) during the wet‐season but was not correlated with Δ13C. Leaf Pmass showed significant positive relationship with MAP and Δ13C only during the dry‐season. For all leaf nutrient‐related traits, the relationships obtained for Δ13C with MAP or MI indicated that Δ13C at the species level reliably reflects the water status at the site level. Temperature and water availability, not foliar nutrient content, are the principal factors influencing Δ13C across Australia.  相似文献   

6.
本试验以131个沙棘属植物种群为研究对象,通过测定其叶片碳稳定同位素(δ13C)值,分析了碳稳定同位素特征与环境因子之间的关系.结果 表明:沙棘属植物叶片的δ13C值介于-24.65‰~-29.11‰‰,平均值为-26.97‰,属于C3植物,叶片δ13C值变异系数为种内大于种间,表明环境因子是影响沙棘属植物叶片δ13C...  相似文献   

7.
Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis‐based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C‐sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural 13C‐abundance (δ13C) in oil palm tissues, including fruits at different maturation stages. We find a 13C‐enrichment in heterotrophic organs compared to mature leaves, with roots being the most 13C‐enriched. The δ13C in fruits decreased during maturation, reflecting the accumulation in 13C‐depleted lipids. We further used observed δ13C values to compute plausible carbon fluxes using a steady‐state model of 13C‐distribution including metabolic isotope effects (12v/13v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C‐exchange between organs.  相似文献   

8.
9.
The flux through the oxidative pentose phosphate (PP) pathway was estimated in Bacillus clausii, Saccharomyces cerevisiae, and Penicillium chrysogenum growing in chemostats with [1-(13)C]glucose as the limiting substrate. The flux calculations were based on a simple algebraic expression that is valid irrespective of isotope rearrangements arising from reversibilities of the reactions in the PP pathway and the upper part of the Embden-Meyerhof-Parnas pathway. The algebraically calculated fluxes were validated by comparing the results with estimates obtained using a numerical method that includes the entire central carbon metabolism. Setting the glucose uptake rate to 100, the algebraic expression yielded estimates of the PP pathway flux in B. clausii, S. cerevisiae, and P. chrysogenum of 20, 42, and 75, respectively. These results are in accordance with the results from the numerical method. The information on the labeling patterns of glucose and the proteinogenic amino acids were obtained using gas chromatography / mass spectrometry, which is a very sensitive technique, and therefore only a small amount of biomass is needed for the analysis. Furthermore, the method developed in this study is fast and readily accessible, as the calculations are based on a simple algebraic expression.  相似文献   

10.
11.
1. Detritus that forms the basis for mosquito production in tree hole ecosystems can vary in type and timing of input. We investigated the contributions of plant- and animal-derived detritus to the biomass of Aedes triseriatus (Say) pupae and adults by using stable isotope ((15)N and (13)C) techniques in lab experiments and field collections.2. Lab-reared mosquito isotope values reflected their detrital resource base, providing a clear distinction between mosquitoes reared on plant or animal detritus.3. Isotope values from field-collected pupae were intermediate between what would be expected if a single (either plant or animal) detrital source dominated the resource base. However, mosquito isotope values clustered most closely with plant-derived values, and a mixed feeding model analysis indicated tree floral parts contributed approximately 80% of mosquito biomass. The mixed model also indicated that animal detritus contributed approximately 30% of mosquito tissue nitrogen.4. Pupae collected later in the season generally had isotope values that were consistent with an increased contribution from animal detritus, suggesting this resource became more nutritionally important for mosquitoes as plant inputs declined over the summer.  相似文献   

12.
黄振远  王瑁  王文卿 《生态学报》2007,27(3):1206-1216
传统上认为红树林输出的有机质产生巨大的能流,支持了巨大的河口和近岸水域生态系统的次级生产。但能量标签技术的研究结果却显示红树林输出的有机质的作用并没有如此巨大。用红树碎屑难消化特性来解释此现象,此外数学模型模拟分析发现潮汐的稀释作用也可以解释这种现象。但这两者都不能解释,在其他初级生产者稀少时,红树材输出的有机质可以被大量利用的现象。在有红树林的河口和近海岸水域生态系统中,藻类等非红树初级生产者具有比红树植物更高的初级生产力,而且更容易被动物获得和消化。可以认为是藻类等巨大初级生产力的竞争作用导致红树初级生产在消费者组织中很难被发现,如此上面提到的难题就能得到很好的解决。此外能量标签技术检测出的是红树的初级生产在消费者组织中的相对比率,不是绝对数量值,从此角度看,能量标签技术的结果与传统观点不是矛盾而是互相补充的关系。由此推测红树的初级生产应该还是被消费者所利用,只是它们在消费者初级营养来源组成中占的比例并不大,但其绝对数量并不少。这与传统观点认为的红树的初级生产被大量利用,支撑了具有巨大的次级生产稍有不同。此外,能量标签技术在红树林生态系统中的适用性尚未检验;计算食物组成的数学工具不是很完善;实验设计上考虑的不够全面;对定量研究有一定的影响。  相似文献   

13.
Earthworms can increase nitrous oxide (N2O) emissions, particularly in no‐tillage systems where earthworms are abundant. Here, we study the effect of residue incorporation depth on earthworm‐induced N2O emissions. We hypothesized that cumulative N2O emissions decrease with residue incorporation depth, because (i) increased water filled pore space (WFPS) in deeper soil layers leads to higher denitrification rates as well as more complete denitrification; and (ii) the longer upward diffusion path increases N2O reduction to N2. Two 84‐day laboratory mesocosm experiments were conducted. First, we manually incorporated maize (Zea mays L.) residue at different soil depths (incorporation experiment). Second, 13C‐enriched maize residue was applied to the soil surface and anecic species Lumbricus terrestris (L.) and epigeic species Lumbricus rubellus (Hoffmeister) were confined to different soil depths (earthworm experiment). Residue incorporation depth affected cumulative N2O emissions in both experiments (< 0.001). In the incorporation experiment, N2O emissions decreased from 4.91 mg N2O–N kg?1 soil (surface application) to 2.71 mg N2O–N kg?1 soil (40–50 cm incorporation). In the earthworm experiment, N2O emissions from L. terrestris decreased from 3.87 mg N2O–N kg?1 soil (confined to 0–10 cm) to 2.01 mg N2O–N kg?1 soil (confined to 0–30 cm). Both experimental setups resulted in dissimilar WFPS profiles that affected N2O dynamics. We also found significant differences in residue C recovery in soil organic matter between L. terrestris (28–41%) and L. rubellus (56%). We conclude that (i) N2O emissions decrease with residue incorporation depth, although this effect was complicated by dissimilar WFPS profiles; and (ii) larger residue C incorporation by L. rubellus than L. terrestris indicates that earthworm species differ in their C stabilization potential. Our findings underline the importance of studying earthworm diversity in the context of greenhouse gas emissions from agro‐ecosystems.  相似文献   

14.
15.
Understanding environmental and physiological controls of the variations in δ(13) C of CO(2) respired (δ(13) C(R)) from different compartments of an ecosystem is important for separation of CO(2) fluxes and to assess coupling between assimilation and respiration. In a wheat field, over 3 days we characterised the temporal dynamics of δ(13) C(R) from shoots and roots, from the soil and from the whole agroecosystem. To evaluate the basis of potential variations in δ(13) C(R), we also measured δ(13) C in different organic matter pools, as well as meteorological and gas exchange parameters. We observed strong diel variations up to ca. 6% in shoot, root and soil δ(13) C(R), but not in δ(13) C of the putative organic substrates for respiration, which varied by not more than ca. 1% within 24 h. Whole ecosystem-respired CO(2) was least depleted in (13) C in the afternoon and most negative in the early morning. We assume that temporally variable respiratory carbon isotope fractionation and changes in fluxes through metabolic pathways, rather than photosynthetic carbon isotope fractionation, governs the δ(13) C of respired CO(2) at the diel scale, and thus provides insights into the metabolic processes related to respiration under field conditions.  相似文献   

16.
17.
18.
Triheptanoin, the triglyceride of heptanoate, is anticonvulsant in various epilepsy models. It is thought to improve energy metabolism in the epileptic brain by re‐filling the tricarboxylic acid (TCA) cycle with C4‐intermediates (anaplerosis). Here, we injected mice with [1,2‐13C]glucose 3.5–4 weeks after pilocarpine‐induced status epilepticus (SE) fed either a control or triheptanoin diet. Amounts of metabolites and incorporations of 13C were determined in extracts of cerebral cortices and hippocampal formation and enzyme activity and mRNA expression were quantified. The percentage enrichment with two 13C atoms in malate, citrate, succinate, and GABA was reduced in hippocampal formation of control‐fed SE compared with control mice. Except for succinate, these reductions were not found in triheptanoin‐fed SE mice, indicating that triheptanoin prevented a decrease of TCA cycle capacity. Compared to those on control diet, triheptanoin‐fed SE mice showed few changes in most other metabolite levels and their 13C labeling. Reduced pyruvate carboxylase mRNA and enzyme activity in forebrains and decreased [2,3‐13C]aspartate amounts in cortex suggest a pyruvate carboxylation independent source of C‐4 TCA cycle intermediates. Most likely anaplerosis was kept unchanged by carboxylation of propionyl‐CoA derived from heptanoate. Further studies are proposed to fully understand triheptanoin's effects on neuroglial metabolism and interaction.

  相似文献   


19.
Agronomic practices such as crop residue return and additional nutrient supply are recommended to increase soil organic carbon (SOC) in arable farmlands. However, changes in the priming effect (PE) on native SOC mineralization in response to integrated inputs of residue and nutrients are not fully known. This knowledge gap along with a lack of understanding of microbial mechanisms hinders the ability to constrain models and to reduce the uncertainty to predict carbon (C) sequestration potential. Using a 13C‐labeled wheat residue, this 126‐day incubation study examined the dominant microbial mechanisms that underpin the PE response to inputs of wheat residue and nutrients (nitrogen, phosphorus and sulfur) in two contrasting soils. The residue input caused positive PE through “co‐metabolism,” supported by increased microbial biomass, C and nitrogen (N) extracellular enzyme activities (EEAs), and gene abundance of certain microbial taxa (Eubacteria, β‐Proteobacteria, Acidobacteria, and Fungi). The residue input could have induced nutrient limitation, causing an increase in the PE via “microbial nutrient mining” of native soil organic matter, as suggested by the low C‐to‐nutrient stoichiometry of EEAs. At the high residue, exogenous nutrient supply (cf. no‐nutrient) initially decreased positive PE by alleviating nutrient mining, which was supported by the low gene abundance of Eubacteria and Fungi. However, after an initial decrease in PE at the high residue with nutrients, the PE increased to the same magnitude as without nutrients over time. This suggests the dominance of “microbial stoichiometry decomposition,” supported by higher microbial biomass and EEAs, while Eubacteria and Fungi increased over time, at the high residue with nutrients cf. no‐nutrient in both soils. Our study provides novel evidence that different microbial mechanisms operate simultaneously depending on organic C and nutrient availability in a residue‐amended soil. Our results have consequences for SOC modeling and integrated nutrient management employed to increase SOC in arable farmlands.  相似文献   

20.
We investigated the effects of oxygen (O2) concentration on methane (CH4) production and oxidation in two humid tropical forests that differ in long‐term, time‐averaged soil O2 concentrations. We identified sources and sinks of CH4 through the analysis of soil gas concentrations, surface emissions, and carbon isotope measurements. Isotope mass balance models were used to calculate the fraction of CH4 oxidized in situ. Complementary laboratory experiments were conducted to determine the effects of O2 concentration on gross and net rates of methanogenesis. Field and laboratory experiments indicated that high levels of CH4 production occurred in soils that contained between 9±1.1% and 19±0.2% O2. For example, we observed CH4 concentrations in excess of 3% in soils with 9±1.1% O2. CH4 emissions from the lower O2 sites were high (22–101 nmol CH4 m?2 s?1), and were equal in magnitude to CH4 emissions from natural wetlands. During peak periods of CH4 efflux, carbon dioxide (CO2) emissions became enriched in 13C because of high methanogenic activity. Gross CH4 production was probably greater than flux measurements indicated, as isotope mass balance calculations suggested that 48–78% of the CH4 produced was oxidized prior to atmospheric egress. O2 availability influenced CH4 oxidation more strongly than methanogenesis. Gross CH4 production was relatively insensitive to O2 concentrations in laboratory experiments. In contrast, methanotrophic bacteria oxidized a greater fraction of total CH4 production with increasing O2 concentration, shifting the δ13C composition of CH4 to values that were more positive. Isotopic measurements suggested that CO2 was an important source of carbon for methanogenesis in humid forests. The δ13C value of methanogenesis was between ?84‰ and ?98‰, which is well within the range of CH4 produced from CO2 reduction, and considerably more depleted in 13C than CH4 formed from acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号