首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.  相似文献   

2.
As part of a larger study of serial complement profiles in glomerulonephritis plasma C3 and C4 concentrations were measured using commercially available immunodiffusion plates. A total of 303 samples were obtained from 128 patients suffering from forms of nephritis associated with hypocomplementaemia—namely, lupus nephritis, mesangiocapillary glomerulonephritis (M.C.G.N.), and acute glomerulonephritis.These simple measurements of C3 and C4 gave clinically useful information. In lupus nephritis C3 and C4 generally correlated and C4 concentrations were more often and more profoundly depressed than C3 concentrations. Neither C3 nor C4 concentrations alone correlated well with the antinuclear factor titre.In both acute glomerulonephritis and M.C.G.N. the C3 concentrations were frequently lower than 20% of normal (which was never the case in patients with lupus), while the C4 concentration was usually normal and was almost never depressed in the absence of C3 depression. This suggests activation of complement at the C3 level by the “bypass” pathway in acute nephritis as well as in M.C.G.N., though both may be operating in some patients. In acute glomerulonephritis but not in M.C.G.N. C3 concentrations returned to normal within eight to 12 weeks.The two varieties of M.C.G.N. identified by the site of the deposits in the capillary glomerular walls differed in their C3 levels. In 10 patients with intramembranous dense linear deposits the C3 was always low over very long periods of time, rising in three out of four patients only after transplantation and immunosuppression. Other patients with M.C.G.N., in contrast, often showed normal C3 concentrations. Concentrations of C4 did not differ in either group, being normal in 80% of samples from all types.  相似文献   

3.
Activation of the classical pathway of complement has been implicated in disease states such as hereditary angioedema, ischemia-reperfusion injury and acute transplant rejection. The trypsin-like serine protease C1s represents a pivotal upstream point of control in the classical pathway of complement activation and is therefore likely to be a useful target in the therapeutic intervention of these disease states. A series of thiopheneamidine-based inhibitors of C1s has been optimized to give a 70 nM inhibitor that inhibits the classical pathway of complement activation in vitro.  相似文献   

4.
Dysregulation of the alternative pathway (AP) of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112) and controls (n = 67). Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH), factor B-C2 (BF-C2) and complement C3 (C3) genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001), were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.  相似文献   

5.
Complement plays a key role in the pathophysiology of many inflammatory diseases, and in this study, we investigated the role of complement in the pathogenesis of inflammatory bowel disease. Compared to wild-type mice, mice deficient in C3 or factor B were protected from acute dextran sulfate sodium (DSS)-induced colitis. C1q/mannose-binding lectin (MBL) double-deficient mice, however, exhibited more severe colitis than wild-type mice. When mice were allowed to recover after DSS treatment, all C1q/MBL(-/-) mice died by day 2 of recovery period, and, surprisingly, all C3(-/-) and factor B(-/-) mice died by day 5. Serum endotoxin levels were significantly increased in complement-deficient mice prior to death, particularly in C1q/MBL(-/-) mice, and antibiotic treatment prevented the lethal effect of DSS in all complement-deficient mice. In contrast to complement deficiency, targeted complement inhibition with either complement receptor 2 (CR2)-Crry (blocks all pathways at C3 activation) or CR2-factor H (blocks alternative pathway) was highly protective at treating established acute colitis. Endotoxin levels remained low in complement-inhibited mice, and complement inhibition also reduced inflammatory cytokines, leukocyte infiltration, and tissue injury while improving wound repair and mucosal healing. CR2-factor H provided more effective protection than CR2-Crry. Thus, complement has both pathogenic and protective roles in acute DSS-induced colitis, and whereas the alternative pathway appears to play a key role in tissue inflammation and injury, the classical/lectin pathway provides important protection in terms of host defense and wound repair. Targeted inhibition of the alternative pathway may represent a therapeutic modality for treating acute phases of inflammatory bowel disease.  相似文献   

6.
Ischemia/reperfusion (I/R) is an important cause of acute renal failure. Recent studies have shown that the complement system mediated by the mannan-binding protein (MBP), which is a C-type serum lectin recognizing mannose, fucose and N-acetylglucosamine residues, plays a critical role in the pathogenesis of ischemic acute renal failure. MBP causes complement activation through the MBP lectin pathway and a resulting complement component, C3b, is accumulated on the brush borders of kidney proximal tubules in a renal I/R-operated mouse kidney. However, the initial step of the complement activation has not been studied extensively. We previously identified both meprins α and β, highly glycosylated zinc metalloproteases, localized on kidney proximal tubules as endogenous MBP ligands. In the present study, we demonstrated that serum-type MBP (S-MBP) and C3b were co-localized with meprins on both the cortex and the medulla in the renal I/R-operated mouse kidney. S-MBP was indicated to interact with meprins in vivo in the I/R-operated mouse kidney and was shown to initiate the complement activation through the interaction with meprins in vitro. Taken together, the present study strongly suggested that the binding of S-MBP to meprins triggers the complement activation through the lectin pathway and may cause the acute renal failure due to I/R on kidney transplantation and hemorrhagic shock.  相似文献   

7.
Tamm-Horsfall protein (THP) binds strongly to complement 1q (C1q), a key component of the classical complement pathway. The goals of this study were to determine whether THP altered the activation of the classical complement pathway and whether the carbohydrate portion of THP was involved in this glycoprotein's binding to C1q and alteration of complement activation. The ability of THP to prevent complement activation in diluted serum or plasma incubated at 37 degrees C was assessed using both a haemolytic assay with antibody-sensitized sheep RBC and a C4d ELISA. Both these methods showed that THP inhibited activation of the classical complement pathway in a dose-dependent manner. Glycosidases were used to remove most of the carbohydrate from THP. This partially deglycosylated THP bound human IgG with a higher affinity (KD1 = 1.4 nmol/L; KD2 = 0.31 micromol/L) than did intact THP (KD1 = 33.4 nmol/L; KD2 = 31.0 micromol/L). An ELISA showed that removal of carbohydrate from THP reduced, but did not eliminate, the ability of this protein to inhibit binding of C1q to intact THP. Haemolysis assays using antibody-sensitized sheep RBC showed that removal of THP carbohydrate eliminated the ability of THP to protect against complement activation. In conclusion, THP inhibited the activation of the classical complement pathway that occurred in diluted serum or plasma. The carbohydrate moieties of THP appeared to be important in this inhibitory activity.  相似文献   

8.
A newly identified fragment of human C4 was detected, using a particular antiserum, in human serum after activation by heat-aggregated immunoglobulins, but not after activation of the complement alternative pathway. This fragment was shown to have a sedimentation velocity of approximately 2.5S, to be heat stable, and to exhibit alpha mobility in immunoelectrophoresis. This C4alpha mobility fragment was not generated in human C4 deficient serum but was generated in human C2 deficient serum after incubation with heat-aggregated immunoglobulin. After precipitation of native C4 and its higher molecular weight fragments from serum by polyethylene glycol, it was possible to quantitate the lower molecular weight C4 alpha mobility fragment by radial immunodiffusion. In kinetic experiments, it was shown that the C4alpha mobility fragment was generated after some delay when compared to the disappearance of C4 hemolytic activity. Quantitation of the C4alpha mobility fragment may be of further use in human diseases for the evaluation of the catabolism of C4: joint fluids of patients suffering from rheumatoid arthritis contained high levels of the C4alpha mobility fragment, and low concentrations were found in patients with degenerative joint disease.  相似文献   

9.
This paper demonstrates that heparin-oligosaccharides with low anticoagulant activity have a high capacity to inhibit activation of the amplification pathway of complement in vitro. We prepared heparin-oligosaccharides by partial depolymerization of heparin using purified flavobacterial heparinase. The resulting oligosaccharide mixture was then fractionated using strong anion exchange-high pressure liquid chromatography to produce individual oligosaccharide components of this mixture, with degree of polymerization ranging from 2 to 16. These heparin-oligosaccharides were examined for both their anticoagulant activity and capacity to inhibit activation of the amplification pathway of complement. Although there was little difference among commercial heparins, a correlation between molecular weight and activity to inhibit convertase generation was clearly established for heparin-oligosaccharides between degree of polymerization 2 through 16. Heparin-oligosaccharides of degree of polymerization 10-16 (Mr 3888-5320) demonstrated up to 54% of heparin's activity on a molar basis (and up to 163% of heparin's activity on a weight basis) in inhibiting the amplification pathway of complement in vitro while showing almost no anticoagulant activity. These studies, for the first time, completely separate heparin's ability to inhibit complement activation from its anticoagulant activity.  相似文献   

10.
Glycoprotein C (gC) of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) binds complement component C3b and protects virus from complement-mediated neutralization. Differences in complement interacting domains exist between gC of HSV-1 (gC1) and HSV-2 (gC2), since the amino terminus of gC1 blocks complement C5 from binding to C3b, while gC2 fails to interfere with this activity. We previously reported that neutralization of HSV-1 gC-null virus by HSV antibody-negative human serum requires activation of C5 but not of downstream components of the classical complement pathway. In this report, we evaluated whether activation of C5 is sufficient to neutralize HSV-2 gC-null virus, or whether formation of the membrane attack complex by C6 to C9 is required for neutralization. We found that activation of the classical complement pathway up to C5 was sufficient to neutralize HSV-2 gC-null virus by HSV antibody-negative human serum. We evaluated the mechanisms by which complement activation occurred in seronegative human serum. Interestingly, natural immunoglobulin M antibodies bound to virus, which triggered activation of C1q and the classical complement pathway. HSV antibody-negative sera obtained from four individuals differed over an approximately 10-fold range in their potency for complement-mediated virus neutralization. These findings indicate that humans differ in the ability of their innate immune systems to neutralize HSV-1 or HSV-2 gC-null virus and that a critical function of gC1 and gC2 is to prevent C5 activation.  相似文献   

11.
The Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that causes infections ranging from acute otitis media to life-threatening invasive disease. Pneumococci have evolved several strategies to circumvent the host immune response, in particular the complement attack. The pneumococcal glycolytic enzyme phosphoglycerate kinase (PGK) is both secreted and bound to the bacterial surface and simultaneously binds plasminogen and its tissue plasminogen activator tPA. In the present study we demonstrate that PGK has an additional role in modulating the complement attack. PGK interacted with the membrane attack complex (MAC) components C5, C7, and C9, thereby blocking the assembly and membrane insertion of MAC resulting in significant inhibition of the hemolytic activity of human serum. Recombinant PGK interacted in a dose-dependent manner with these terminal pathway proteins, and the interactions were ionic in nature. In addition, PGK inhibited C9 polymerization both in the fluid phase and on the surface of sheep erythrocytes. Interestingly, PGK bound several MAC proteins simultaneously. Although C5 and C7 had partially overlapping binding sites on PGK, C9 did not compete with either one for PGK binding. Moreover, PGK significantly inhibited MAC deposition via both the classical and alternative pathway at the pneumococcal surface. Additionally, upon activation plasmin(ogen) bound to PGK cleaved the central complement protein C3b thereby further modifying the complement attack. In conclusion, our data demonstrate for the first time to our knowledge a novel pneumococcal inhibitor of the terminal complement cascade aiding complement evasion by this important pathogen.  相似文献   

12.
Alzheimer's disease (AD) is a neurodegenerative disease resulting in progressive cognitive decline. Amyloid plaque deposits consisting specifically of β-amyloid peptides that have formed fibrils displaying β-pleated sheet conformation are associated with activated microglia and astrocytes, are colocalized with C1q and other complement activation products, and appear at the time of cognitive decline in AD. Amyloid precursor protein (APP) transgenic mouse models of AD that lack the ability to activate the classical complement pathway display less neuropathology than do the APPQ+/+ mice, consistent with the hypothesis that complement activation and the resultant inflammation may play a role in the pathogenesis of AD. Further investigation of the presence of complement proteins C3 and C4 in the brain of these mice demonstrate that both C3 and C4 deposition increase with age in APPQ+/+ transgenic mice, as expected with the age-dependent increase in fibrillar β-amyloid deposition. In addition, while C4 is predominantly localized on the plaques and/or associated with oligodendrocytes in APPQ+/+ mice, little C4 is detected in APPQ−/− brains consistent with a lack of classical complement pathway activation because of the absence of C1q in these mice. In contrast, plaque and cell associated C3 immunoreactivity is seen in both animal models and, surprisingly, is higher in APPQ−/− than in APPQ+/+ mice, providing evidence for alternative pathway activation. The unexpected increase in C3 levels in the APPQ−/− mice coincident with decreased neuropathology provides support for the hypothesis that complement can mediate protective events as well as detrimental events in this disease. Finally, induced expression of C3 in a subset of astrocytes suggests the existence of differential activation states of these cells.  相似文献   

13.
Immune complex-induced inflammation can be mediated by the classical pathway of complement. However, using mice genetically deficient in factor B or C4, we have shown that the collagen Ab-induced model of arthritis requires the alternative pathway of complement and is not dependent on the classical pathway. We now demonstrate that collagen Ab-induced arthritis is not altered in mice genetically deficient in either C1q or mannose-binding lectins A and C, or in both C1q and mannose-binding lectins. These in vivo results prove the ability of the alternative pathway to carry out pathologic complement activation in the combined absence of intact classical and lectin pathways. C3 activation was also examined in vitro by adherent collagen-anti-collagen immune complexes using sera from normal or complement-deficient mice. These results confirm the ability of the alternative pathway to mediate immune complex-induced C3 activation when C4 or C1q, or both C1q and mannose-binding lectins, are absent. However, when all three activation pathways of complement are intact, initiation by immune complexes occurs primarily by the classical pathway. These results indicate that the alternative pathway amplification loop, with its ability to greatly enhance C3 activation, is necessary to mediate inflammatory arthritis induced by adherent immune complexes.  相似文献   

14.
Determination of the complement titer in the serum and plasm of 120 patients with chronic liver diseases showed that in eight (7%) patients with cirrhosis of the liver, chronic active or chronic inactive hepatitis complement in the serum was less than half in the plasma. The dissociation of complement serum and plasma was due to cold activation of the classical pathway of complement in vitro since serum drawn from these patients at 37 degrees C lost hemolytic activity in 4 hours when transferred to a cold environment. Neither HB antigen nor cryoglobulin participated in this phenomenon. The activation of complement in the cold could be prevented by increasing the ionic strength, or by adding vitamin E or, to a lesser extent its vehicle HCO-60, while heparin, Trasylol, soybean trypsin inhibitor, or hirudin had no effect. Trans-AMCHA prevented activation in one case. It is speculated that a factor appearing as a result of blood clotting is able to activate the classical pathway of complement in the cold; it is probably not related to Hageman factor (factor XII), factor VII, thrombin, kallikrein.  相似文献   

15.
Ischemia/reperfusion (I/R) injury of the kidney is a common cause of acute renal failure (ARF) and is associated with high morbidity and mortality in the intensive care unit. The mechanisms underlying I/R injury are complex. Studies have shown that complement activation contributes to the pathogenesis of I/R injury in the kidney, but the exact mechanisms of complement activation have not been defined. We hypothesized that complement activation in this setting occurs via the alternative pathway and that mice deficient in complement factor B, an essential component of the alternative pathway, would be protected from ischemic ARF. Wild-type mice suffered from a decline in renal function and had significant tubular injury, particularly in the outer medulla, after I/R. We found that factor B-deficient mice (fB(-/-)) developed substantially less functional and morphologic renal injury after I/R. Furthermore, control wild-type mice had an increase in tubulointerstitial complement C3 deposition and neutrophil infiltration in the outer medulla after I/R, whereas fB(-/-) mice demonstrated virtually no C3 deposition or neutrophil infiltration. Our results demonstrate that complement activation in the kidney after I/R occurs exclusively via the alternative pathway, and that selective inhibition of this pathway provides protection to the kidneys from ischemic ARF.  相似文献   

16.
Complement proteins in blood recognize charged particles. The anionic phospholipid (aPL) cardiolipin binds both complement proteins C1q and factor H. C1q is an activator of the complement classical pathway, while factor H is an inhibitor of the alternative pathway. To examine opposing effects of C1q and factor H on complement activation by aPL, we surveyed C1q and factor H binding, and complement activation by aPL, either coated on microtitre plates or in liposomes. Both C1q and factor H bound to all aPL tested, and competed directly with each other for binding. All the aPL activated the complement classical pathway, but negligibly the alternative pathway, consistent with accepted roles of C1q and factor H. However, in this system, factor H, by competing directly with C1q for binding to aPL, acts as a direct regulator of the complement classical pathway. This regulatory mechanism is distinct from its action on the alternative pathway. Regulation of classical pathway activation by factor H was confirmed by measuring C4 activation by aPL in human sera in which the C1q:factor H molar ratio was adjusted over a wide range. Thus factor H, which is regarded as a down-regulator only of the alternative pathway, has a distinct role in downregulating activation of the classical complement pathway by aPL. A factor H homologue, β2-glycoprotein-1, also strongly inhibits C1q binding to cardiolipin. Recombinant globular domains of C1q A, B and C chains bound aPL similarly to native C1q, confirming that C1q binds aPL via its globular heads.  相似文献   

17.
Activation of complement by pathogenic and nonpathogenic Entamoeba histolytica   总被引:12,自引:0,他引:12  
Previous studies had demonstrated that strains of Entamoeba histolytica isolated from patients with colitis or amebic liver abscess were resistant to complement-mediated killing, whereas strains from asymptomatic patients were readily lysed by non-immune serum. Both serum-sensitive and serum-resistant strains of E. histolytica depleted complement rapidly as assessed by CH50, C3, and C7, and C5-9 hemolytic activities. Activation of the alternative pathway was important in lysis of nonpathogenic strains, as demonstrated by lysis by NHS (60.9 +/- 15.6%) and NHS + 5 mM EGTA (59.3 +/- 4.5%) as well as by C4-deficient guinea pig serum (72.8 +/- 7.1%) and C2-deficient human serum (64.4 +/- 11.1%), but not by NHS + 5 mM EDTA. Classical pathway activation also occurs as both pathogenic and nonpathogenic strains deplete greater than 98% of C4 activity, although it is not necessary for lysis. Pathogenic strains are not lysed by either the classical or the alternative pathway. These results suggest that pathogenic strains of E. histolytica activate complement but are able to evade an important host defense, complement-mediated lysis.  相似文献   

18.
B Pepper  N R Farid 《Human heredity》1979,29(5):279-283
We have examined electrophoretic variants of the third complement component (C3) in 294 controls and in 44 patients suffering from Graves' disease, drawn from the Avalon Peninsula of Newfoundland. Two common C3 variants, S and F, account for 99% of the gene frequencies. The S homozygote phenotype was observed in 170 controls and in 27 patients; 18 controls were found to be homozygous for the F allele (3 patients), and the FS phenotype was observed in 103 controls and 14 patients. The phenotypic frequencies did not differ significantly between controls and patients. It is concluded that C3 variants do not distinguish individuals who have Graves' disease.  相似文献   

19.
The recognition molecules of the lectin complement pathway are mannose-binding lectin and Ficolin -1, -2 and -3. Recently deficiency of Ficolin-3 was found to be associated with life threatening infections. Thus, we aimed to develop a functional method based on the ELISA platform for evaluating Ficolin-3 mediated complement activation that could be applicable for research and clinical use. Bovine serum albumin (BSA) was acetylated (acBSA) and chosen as a solid phase ligand for Ficolins in microtiter wells. Binding of Ficolins on acBSA was evaluated, as was functional complement activation assessed by C4, C3 and terminal complement complex (TCC) deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition on acBSA were dependent only on Ficolin-3 in appropriate serum dilutions. Deposition of down stream complement components correlated highly significantly with the serum concentration of Ficolin-3 but not with Ficolin-2 in healthy donors. To make the assay robust for clinical use a chemical compound was applied to the samples that inhibited interference from the classical pathway due to the presence of anti-BSA antibodies in some sera. We describe a novel functional method for measuring complement activation mediated by Ficolin-3 in human serum up to the formation of TCC. The assay provides the possibility to diagnose functional and genetic defects of Ficolin-3 and down stream components in the lectin complement pathway.  相似文献   

20.
The consequences of complement activation and the symptoms of decompression sickness are similar. Consequently, the relation between the sensitivity of individuals to complement activation by air bubbles and their susceptibility to decompression sickness has been examined. Plasma samples from 34 individuals were incubated with air bubbles, and the concentration of the fluid phase metabolites of complement activation C3a, C4a, and C5a were measured with radioimmunoassays. It was found that both the anaphylatoxins C3a and C5a were produced by the presence of air bubbles but that the anaphylatoxin C4a was not. This finding indicates that air bubbles activate the complement system by the alternate pathway. One group of individuals was found to be particularly sensitive to complement activation by this pathway. They produced 3.3 times more C3a and 5.3 times more C5a in their plasma samples incubated with air bubbles as did the other group. Sixteen individuals were subjected to a series of pressure profiles that were severe enough to produce bubbles in their circulatory system that could be detected by Doppler ultrasonic monitoring. The group of individuals that had been identified as being more sensitive to complement activation by the alternate pathway was also found to be more susceptible to decompression sickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号