首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
组蛋白赖氨酸甲基化在表观遗传调控中起着关键作用。组蛋白甲基转移酶G9a(又称作常染色质组蛋白赖氨酸N-甲基转移酶2(euchromatic histone-lysine N-methyltransferase 2,EHMT2))含经典的SET结构域,是常染色质主要的甲基转移酶之一,可以甲基化组蛋白H3K9、H3K27和H1bK26等。此外,G9a也可以直接甲基化一些非组蛋白,并与DNA甲基化密切相关。G9a功能紊乱可以导致胚胎发育异常、免疫系统及神经系统发育障碍、甚至癌症的发生发展。  相似文献   

2.
3.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

4.
5.
G9a is one of the well-characterized histone methyltransferases. G9a regulates H3K9 mono- and dimethylation at euchromatic region and consequently plays important roles in euchromatic gene regulation. Mammalian G9a contains several distinct domains, such as GHD (G9a homology domain), ANK, preSET, SET and PostSET. These domains are highly conserved between mammals and Drosophila. Although mammalian G9a has nuclear localization signal (NLS) in its N-terminal region, the amino acid sequences of this region are not conserved in Drosophila. Here we have examined the subcellular localization of a series of truncated forms of Drosophila G9a (dG9a). The identified region (aa337-aa470) responsible for nuclear localization of dG9a contains four short stretches of positively charged basic amino acids (NLS1, aa334-aa345; NLS2, aa366-aa378; NLS3, aa407-aa419; NLS4, aa461-aa472). Each of NLS1, NLS3 and NLS4 is sufficient for the nuclear localization when they are fused with the enhanced green fluorescent protein. These NLSs of dG9a are distinct from those of mammalian G9a in their positions and amino acid sequences.  相似文献   

6.
Lysine-specific murine histone H3 methyltransferase, G9a, was expressed and purified in a baculovirus expression system. The primary structure of the recombinant enzyme is identical to the native enzyme. Enzymatic activity was favorable at alkaline conditions (>pH 8) and low salt concentration and virtually unchanged between 25 and 42 degrees C. Purified G9a was used for substrate specificity and steady-state kinetic analysis with peptides representing un- or dimethylated lysine 9 histone H3 tails with native lysine 4 or with lysine 4 changed to alanine (K4AK9). In vitro methylation of the H3 tail peptide resulted in trimethylation of Lys-9 and the reaction is processive. The turnover number (k(cat)) for methylation was 88 and 32 h(-1) on the wild type and K4AK9 histone H3 tail, respectively. The Michaelis constants for wild type and K4AK9 ((K(m)(pep))) were 0.9 and 1.0 microM and for S-adenosyl-L-methionine (K(m)(AdoMet)) were 1.8 and 0.6 microM, respectively. Comparable kinetic constants were obtained for recombinant histone H3. The conversion of K4AK9 di- to trimethyl-lysine was 7-fold slower than methyl group addition to unmethylated peptide. Preincubation studies showed that G9a-AdoMet and G9a-peptide complexes are catalytically active. Initial velocity data with peptide and S-adenosyl-L-methionine (AdoMet) and product inhibition studies with S-adenosyl-L-homocysteine were performed to assess the kinetic mechanism of the reaction. Double reciprocal plots and preincubation studies revealed S-adenosyl-L-homocysteine as a competitive inhibitor to AdoMet and mixed inhibitor to peptide. Trimethylated peptides acted as a competitive inhibitor to substrate peptide and mixed inhibitor to AdoMet suggesting a random mechanism in a Bi Bi reaction for recombinant G9a where either substrate can bind first to the enzyme, and either product can release first.  相似文献   

7.
Histone lysine methylation has important roles in the organization of chromatin domains and the regulation of gene expression. To analyze its function and modulate its activity, we screened for specific inhibitors against histone lysine methyltransferases (HMTases) using recombinant G9a as the target enzyme. From a chemical library comprising 125,000 preselected compounds, seven hits were identified. Of those, one inhibitor, BIX-01294 (diazepin-quinazolin-amine derivative), does not compete with the cofactor S-adenosyl-methionine, and selectively impairs the G9a HMTase and the generation of H3K9me2 in vitro. In cellular assays, transient incubation of several cell lines with BIX-01294 lowers bulk H3K9me2 levels that are restored upon removal of the inhibitor. Importantly, chromatin immunoprecipitation at several G9a target genes demonstrates reversible reduction of promoter-proximal H3K9me2 in inhibitor-treated mouse ES cells and fibroblasts. Our data identify a biologically active HMTase inhibitor that allows for the transient modulation of H3K9me2 marks in mammalian chromatin.  相似文献   

8.
9.
10.
Imprinted genes in mammals are often located in clusters whose imprinting is subject to long range regulation by cis-acting sequences known as imprinting centers (ICs). The mechanisms by which these ICs exert their effects is unknown. The Prader-Willi syndrome IC (PWS-IC) on human chromosome 15 and mouse chromosome 7 regulates imprinted gene expression bidirectionally within an approximately 2-megabase region and shows CpG methylation and histone H3 Lys-9 methylation in somatic cells specific for the maternal chromosome. Here we show that histone H3 Lys-9 methylation of the PWS-IC is reduced in mouse embryonic stem (ES) cells lacking the G9a histone H3 Lys-9/Lys-27 methyltransferase and that maintenance of CpG methylation of the PWS-IC in mouse ES cells requires the function of G9a. We show by RNA fluorescence in situ hybridization (FISH) that expression of Snrpn, an imprinted gene regulated by the PWS-IC, is biallelic in G9a -/- ES cells, indicating loss of imprinting. By contrast, Dnmt1 -/- ES cells lack CpG methylation of the PWS-IC but have normal levels of H3 Lys-9 methylation of the PWS-IC and show normal monoallelic Snrpn expression. Our results demonstrate a role for histone methylation in the maintenance of parent-specific CpG methylation of imprinting regulatory regions and suggest a possible role of histone methylation in establishment of these CpG methylation patterns.  相似文献   

11.
Post-translational modifications of histones alter chromatin structure and play key roles in gene expression and specification of cell states. Small molecules that target chromatin-modifying enzymes selectively are useful as probes and have promise as therapeutics, although very few are currently available. G9a (also named euchromatin histone methyltransferase 2 (EHMT2)) catalyzes methylation of lysine 9 on histone H3 (H3K9), a modification linked to aberrant silencing of tumor-suppressor genes, among others. Here, we report the discovery of a novel histone methyltransferase inhibitor, BRD4770. This compound reduced cellular levels of di- and trimethylated H3K9 without inducing apoptosis, induced senescence, and inhibited both anchorage-dependent and -independent proliferation in the pancreatic cancer cell line PANC-1. ATM-pathway activation, caused by either genetic or small-molecule inhibition of G9a, may mediate BRD4770-induced cell senescence. BRD4770 may be a useful tool to study G9a and its role in senescence and cancer cell biology.  相似文献   

12.
13.
14.
15.
16.
Taras Y Nazarko 《Autophagy》2014,10(7):1348-1349
Like other selective autophagy pathways, the selective autophagy of peroxisomes, pexophagy, is controlled by receptor protein complexes (RPCs). The pexophagic RPC in Pichia pastoris consists of several proteins: Pex3 and Pex14 ligands in the peroxisomal membrane, Atg30 receptor, Atg11, and Atg17 scaffolds, and the phagophore protein Atg8. Recently, we identified a new component of the pexophagic RPC, Atg37, which is involved in the assembly of this complex. Atg37 is an integral peroxisomal membrane protein (PMP) that binds Pex3 and Atg30, but not Pex14 or Atg8. In the absence of Atg37, the recognition of Pex3 and recruitment of Atg17 by Atg30 are normal. However, the recruitment of Atg11 is severely affected suggesting that the role of Atg37 is to facilitate the Atg30-Atg11 interaction. Palmitoyl-CoA competes with Atg30 for the acyl-CoA binding domain of Atg37 in vitro and might regulate the dynamics of the pexophagic RPC in vivo. The human counterpart of Atg37, ACBD5, also localizes to peroxisomes and is specifically required for pexophagy. Therefore, it is tempting to speculate that ACBD5/ATG37 regulates the assembly of the pexophagic RPC in mammalian cells.  相似文献   

17.
18.
Histone methylation plays an important role in chromatin dynamics and gene expression. Methylation of histone H3-lysine 27 by the EZH2 complex has been linked to the silencing of homeotic genes and the inactivation of the X chromosome. Here we report a characterization of the substrate preferences of the enzyme complex using a reconstituted chromatin and enzyme system. We found that the linker histone H1, when incorporated into nucleosomes, stimulates the enzymatic activity toward histone H3. This stimulatory activity may be explained by protein-protein interactions between H1 and components of the EZH2 complex. In addition, we found that the EZH2 complex exhibits a dramatic preference for dinucleosomes when compared with mononucleosomes and that the stimulation of H3 methylation by H1 requires dinucleosomes or oligonucleosome substrates. Furthermore, in contrast with a recent study suggesting that Embryonic Ectoderm Development EED isoforms may affect substrate specificity, we found that EZH2 complexes reconstituted with different EED isoforms exhibit similar substrate preference and specificity. Our work supports the hypothesis that linker histone H1 and chromatin structure are important factors in determining the substrate preference of the EZH2 histone methyltransferase complex.  相似文献   

19.

Background

Modifications of the histone amino-terminal tails affect access of regulatory factors and complexes to chromatin and thereby influence biological processes. Cancer cells are characterized by prominent epigenetic dysregulation, including histone modifications. However, the functional roles of the histone methyltransferases (HMT) in cancer remain unclear.

Methodology/Principal Findings

We studied RNAi-based inhibition (knockdown, KD) of 2 different H3K9 HMTs, SUV39H1 and G9a. Knockdown of the 2 HMTs in PC3 cancer cell line markedly inhibited cell growth and caused profound morphological changes with loss of telomerase activity and shortened telomeres. SUV39H1 KD cells showed substantial increase in G2/M fraction. G9a KD cells showed increased DNA content (1.7-fold in 2 independent clones) compared with FACS analyses to control. Karyotype analyses showed that this was due to an increased number of chromosomes (from 61 to 102) in G9a KD cells compared to parental PC3. Intriguingly, we found abnormal centrosome morphology and number in about 25% of the G9a KD cells, while centrosomes were morphologically normal in control cells. Microarray analyses after KD of SUV39H1 or G9a showed very few genes up-regulated among the 39,000 genes. The silenced tumor-suppressor genes p16 and RASSF1A were not activated in KD cells.

Conclusions/Significance

These data suggest that the 2 HMTs, SUV39H1 and G9a are required to perpetuate the malignant phenotype. Furthermore, G9a plays a critical role in regulating centrosome duplication presumably through chromatin structure rather than through affecting gene expression in cancer cells. Targeting these histone methyltransferases may be of therapeutic benefit in cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号