首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic basis of a sexually dimorphic quantitative character in Drosophila melanogaster was investigated by means of two-way directional selection for increased and decreased differences between male and female wing length. The sex dimorphism (SD), defined as the mean wing length difference between the sexes, within families, provided the criterion for selection.-The two lines (High SD, Low SD) diverged rapidly during the 15 generations of selection, indicating the presence of extensive genetic variability for the genotype-sex interaction underlying the observed sexual dimorphism. There was evidence that genetic variability persisted in both lines when selection was relaxed. Most of the divergence between the two lines remained after 10 generations of relaxed selection.-The change in the level of sex dimorphism in the High line was due primarily to a decrease in male wing length; in the Low line most of the change in SD was the result of a decrease in female wing length. An overall reduction in wing length in both sexes in both lines is interpreted as an effect of inbreeding.-The distribution and nature of the genetic control underlying the SD characteristic of the two selection lines was investigated by chromosome substitution between selection lines using a marked inversion technique. The two lines differed by factors located on each of the three major chromosome pairs. Chromosome III had the greatest effect on the difference in SD level between lines, and showed an overall additive effect when present in homozygous versus heterozygous combination. Chromosome II had the least effect, with a significant dominance effect of the High II being evident when heterozygotes were compared with homozygotes. The effect of the X chromosome was intermediate. There was some evidence of interaction between non-homologous chromosomes.  相似文献   

2.
Traditionally it was thought that fitness-related traits such as male mating frequency, with a history of strong directional selection, should have little additive genetic variance and thus respond asymmetrically to bidirectional artificial selection. However, recent findings and theory suggest that a balance between selection for increased male mating frequency and opposing selection pressures on physiologically linked traits will cause male mating frequency to have high additive genetic variation and hence respond symmetrically to selection. We tested these hypotheses in the stalk-eyed fly, Cyrtodiopsis dalmanni, in which males hold harems comprising many females and so have the opportunity to mate at extremely high frequencies. We subjected male stalk-eyed flies to artificial selection for increased ('high') and decreased ('low') mating frequency in the presence of ecologically realistic, high numbers of females. High line males mated significantly more often than control or low line males. The direct response to selection was approximately symmetric in the high and low lines, revealing high additive genetic variation for, and no significant genetic constraints on, increased male mating frequency in C. dalmanni. In order to investigate trade-offs that might constrain male mating frequency under natural conditions we examined correlated responses to artificial selection. We measured accessory gland length, testis length and eyespan after 7 and 14 generations of selection. High line males had significantly larger accessory glands than low line males. No consistent correlated responses to selection were found in testis length or eyespan. Our results suggest that costs associated with the production and maintenance of large accessory glands, although yet to be identified, are likely to be a major constraint on mating frequency in natural populations of C. dalmanni.  相似文献   

3.
A seven-generation selection experiment comprising a selected (S) and a control (C) line was conducted with the objective of increasing the number of fertile eggs (F) of the Brown Tsaiya duck after a single artificial insemination (AI) with pooled Muscovy semen. Both lines consisted of about 20 males and 60 females since parents in each generation and each female duck was tested 3 times, at 26, 29 and 32 weeks of age. The fertile eggs were measured by candling at day 7 of incubation. The selection criterion in the S line was the BLUP animal model value for F. On average, 24.7% of the females and 15% of the males were selected. The direct responses to the selection for F, and correlated responses for the number of eggs set (Ie), the number of total dead embryos (M), the maximum duration of fertility (Dm) and the number of hatched mule ducklings (H) were measured by studying the differences across the generations of selection between the phenotypic value averages in the S and C lines. The predicted genetic responses were calculated by studying the differences between the S and C lines in averaged values of five traits of the BLUP animal model. The selection responses and the predicted responses showed similar trends. There was no genetic change for Ie. After seven generations of selection, the average selection responses per generation were 0.40, 0.33, 0.42, 0.41 genetic standard deviation units for F, M, Dm, and H respectively. Embryo viability was not impaired by this selection. For days 2–8 after AI, the fertility rates (F/Ie) were 89.2% and 63.8%, the hatchability rates (H/F) were 72.5% and 70.6%, and (H/Ie) were 64.7% and 45.1% in the S and C lines respectively. It was concluded that upward selection on the number of fertile eggs after a single AI with pooled Muscovy semen may be effective in ducks to increase the duration of the fertile period and the fertility and hatchability rates with AI once a week instead of twice a week.  相似文献   

4.
Genetic control of blood pressure in spontaneously hypertensive rats (SHR)   总被引:1,自引:0,他引:1  
H Tanase 《Jikken dobutsu》1979,28(4):519-530
Genetic control of blood pressure in the SHR strain was studied by three separate experiments which consist of cross analysis between the SHR and Donryu, two-way selecton for high and low blood pressure levels, and successive backcrosses to the parental strains. The results obtained were as follows. 1. The data from genetic crosses between the SHR and Donryu showed the phenotype segregation ratio of 1:1 at the backcross and 1:2:1 at the F2 generation. 2. Two-way selection for high and low blood pressure levels was performed from the F2 generation onward. The separation between the two lines occurred immediately after the first selection. Thereafter, the difference increased gradually with generation. The blood pressure level at the seventh generation of selection became approximately equal to those of the parental strains. 3. Two types of the successive backcross were performed from the F1 hybrids by mating the males showing the highest blood pressure level to Donryu females and the females showing the lowest blood pressure level to SHR males on the other. Bimodality was observed in the distribution of blood pressure levels at each generation. Their phenotypic segregation ratios were accordant with 1:1 on the whole. At the intercross generation during successive backcrosses, a trimodal distribution was observed. 4. These results confirmed that the hypertensive trait of the SHR is regulated by a single major gene and other several genes with minor effect. A gene symbol ht was proposed for this major gene. Concurrently, a congenic strain having the ht gene on the genetic background of the Donryu was developed by the successive backcross system.  相似文献   

5.
The quantitative genetics of fluctuating asymmetry   总被引:1,自引:0,他引:1  
Fluctuating asymmetry (subtle departures from identical expression of a trait across an axis of symmetry) in many taxa is under stabilizing selection for reduced asymmetry. However, lack of reliable estimates of genetic parameters for asymmetry variation hampers our ability to predict the evolutionary outcome of this selection. Here we report on a study, based on analysis of variation within and between isofemale lines and of generation means (line-cross analysis), designed to dissect in detail the quantitative genetics of positional fluctuating asymmetry (PFA) in bristle number in natural populations of Drosophila falleni. PFA is defined as the difference between the two sides of the body in the placement or position of components of a meristic trait. Heritability (measured at 25 degrees C) of two related measures of PFA were 13% and 21%, both of which differed significantly from zero. In contrast, heritability estimates for fluctuating asymmetry in the total number of anterior (0.7%) and transverse (2.4%) sternopleural bristles were smaller, not significant, and in quantitative agreement with previously published estimates. Heritabilities for bristle number (trait size) were considerably greater than that for any asymmetry measure. The experimental design controlled for the potentially confounding effects of common familial environment, and repeated testing revealed that PFA differences between lines were genetically stable for up to 16 generations in the laboratory at 25 degrees C. We performed line cross analysis between strains at the extremes of the PFA distribution (highest and lowest values); parental strains, F1, F1r (reciprocal), F2, backcross, and backcross reciprocal generations were represented. The inheritance of PFA was described best by additive and dominance effects localized to the X-chromosomes, whereas autosomal dominance effects were also detected. Epistatic, maternal, and cytoplasmic effects were not detected. The inheritance of trait size was notably more complex and involved significant autosomal additive, dominance, and epistatic effects; maternal dominance effects; and additive and dominance effects localized to the X-chromosomes. The additive genetic correlation between PFA and its associated measure of trait size was negative (-0.049), but not statistically significant, indicating that the loci contributing additive genetic effects to these traits are probably different. It is suggested that PFA may be a sensitive measure of developmental instability because PFA taps the ability of an organism to integrate interconnected developmental pathways.  相似文献   

6.
《Animal behaviour》1988,36(1):106-114
Artificial selection for choice between high protein content and high energy content of food was performed for 44 generations of fruitfly larvae. There were significant responses to selection both in a line selected to choose high energy food and in a line selected to choose high protein food. Both lines showed a significantly higher preference for the selected food type than did the control line. The line selected for high energy food also showed a significant increase in response over the generations. Since the selection resulted in lines that differed significantly from controls and from each other, there must be some genetic basis for food choice behaviour. Realized heritability was very low in both selected lines. Viability, as measured by larval weight, pupation time, emergence time and adult size, was significantly higher for flies raised on high protein food than for those raised on high energy food.  相似文献   

7.
 Sugar beet hybrids are produced by crossing a cytoplasmic male-sterile (CMS) line with a pollinator. New CMS lines are produced by crossing a fertile plant to an existing CMS line. The fertile plant is also selfed. In the following generation, one of the selfed, fertile progeny is paired and isolated with one of the crossed, CMS progeny, to give a second generation of selfing and crossing. Over a series of such crosses and selfs, a new fertile inbred line and its corresponding, near-isogenic CMS partner are produced. Selection among lines takes place at one or more stages of the backcrossing programme. A method is presented here for calculating the genetic variances and covariances within and between lines and generations based on a derivation of additive genetic relationships modified from an approach widely employed in animal breeding. The genetic variances and covariances are used to predict response to selection from varying strategies, from which optimum schemes can be determined. Results suggest that selection should generally take place after three generations of backcrossing when the fertile plant used to initiate the backcrossing process is not inbred, but can take place after generation two when the fertile plant is inbred. Doubled haploid production is unlikely to provide an extra advantage that would be worthwhile in such a system. The method developed here can be used to explore a wide range of more complex breeding systems. Received: 27 July 1998 / Accepted: 19 October 1998  相似文献   

8.
Genetic Modification of Recombination Rate in TRIBOLIUM CASTANEUM   总被引:1,自引:0,他引:1       下载免费PDF全文
Andrew A. Dewees 《Genetics》1975,81(3):537-552
Asymmetrical responses were obtained in a replicated study of 15 generations of two-way selection for recombination rate between the ruby (rb) and jet (j) loci in Tribolium castaneum. Recombination rates in the two replicate high lines increased from an average of 0.22 in the base populations to an average of 0.42 at generation 15. Recombination rate pooled over the 15 generations of selection in each low line was significantly less than the control but there was no clear downward trend in response to selection for decreased recombination rate. The realized heritabilities were 0.16 +/- 0.03 and 0.17 +/- 0.02 in the two high lines, and were not significantly different from zero in the two low lines. Selection was based on crossing over in cis females only; however, rates measured in cis males after 12 generations showed the same response patterns as female rates. Similar response patterns were also determined for recombination measured in trans males and females at generation 18 following three generations of relaxed selection. The distribution of recombination rates measured in backcross beetles [(H X L) X H and (H X L) X L] at generation 12 indicated polygenic control with those genes decreasing recombination rate being dominant. Detailed analysis of recombination rates in F1's produced by interline crosses at generation 15 confirmed the directional dominance findings. Under a polygenic model of recombination modifiers in which low recombination is dominant to high, average recombination rates will increase as inbreeding progresses, thus providing a mechanism for the production of new gene combinations in small populations.  相似文献   

9.
In this paper we present a novel approach to quantifying genetic architecture that combines recombinant inbred lines (RIL) with line cross analysis (LCA). LCA is a method of quantifying directional genetic effects (i.e. summed effects of all loci) that differentiate two parental lines. Directional genetic effects are thought to be critical components of genetic architecture for the long term response to selection and as a cause of inbreeding depression. LCA typically begins with two inbred parental lines that are crossed to produce several generations such as F1, F2, and backcrosses to each parent. When a RIL population (founded from the same P1 and P2 as was used to found the line cross population) is added to the LCA, the sampling variance of several nonadditive genetic effect estimates is greatly reduced. Specifically, estimates of directional dominance, additive x additive, and dominance x dominance epistatic effects are reduced by 92%, 94%, and 56% respectively. The RIL population can be simultaneously used for QTL identification, thus uncovering the effects of specific loci or genomic regions as elements of genetic architecture. LCA and QTL mapping with RIL provide two qualitatively different measures of genetic architecture with the potential to overcome weaknesses of each approach alone. This approach provides cross-validation of the estimates of additive and additive x additive effects, much smaller confidence intervals on dominance, additive x additive and dominance x dominance estimates, qualitatively different measures of genetic architecture, and the potential when used together to balance the weaknesses of LCA or RIL QTL analyses when used alone.  相似文献   

10.
Data were analysed from a divergent selection experiment for an indicator of body composition in the mouse, the ratio of gonadal fat pad to body weight (GFPR). Lines were selected for 20 generations for fat (F), lean (L) or were unselected (C), with three replicates of each. Selection was within full-sib families, 16 families per replicate for the first seven generations, eight subsequently. At generation 20, GFPR in the F lines was twice and in the L lines half that of C. A log transformation removed both asymmetry of response and heterogeneity of variance among lines, and so was used throughout. Estimates of genetic variance and heritability (approximately 50%) obtained using REML with an animal model were very similar, whether estimated from the first few generations of selection, or from all 20 generations, or from late generations having fitted pedigree. The estimates were also similar when estimated from selected or control lines. Estimates from REML also agreed with estimates of realised heritability. The results all accord with expectations under the infinitesimal model, despite the four-fold changes in mean. Relaxed selection lines, derived from generation 20, showed little regression in fatness after 40 generations without selection.  相似文献   

11.
Resting blood lactate levels were measured in inbred mouse strains, their F(1), and several of their segregating generations to determine whether the level of lactic acid is influenced by genetic factors. The inbred strains in each of the two sets used differed significantly from one another for this character. Only one strain showed a significant sex difference. The data could not be fully analyzed because of the failure to fulfill Mather's first criterion for an adequate scale. Nonallelic interactions, in particular, additive x dominance and dominance x dominance, were found to influence the generation means. Genotype x environment interaction was detected and eliminated by log transformation. Negative heterosis was exhibited by all but one noninbred generation.-The data suggest that genes influencing the character are dispersed between the parental lines and that interactions are predominantly of the duplicate kind. A buffering system by which lactate levels are kept at a minimum is proposed.  相似文献   

12.
Britton SL  Koch LG 《IUBMB life》2005,57(9):631-638
We speculated that the rise in atmospheric oxygen from 2 billion years ago was so integral for the evolution of biocomplexity that it must also associate strongly with complex diseases. As a remote test of this idea, we hypothesized that lines contrasting for disease and health would emerge from artificial selection for low and high aerobic treadmill running capacity. Eleven generations of selection in rats produced lines that differed by 347% in running capacity. The low line demonstrated health risk factors including higher visceral adiposity, blood pressure, insulin, and triglycerides. The high line was superior for VO2max, economy of running, heart function, and nitric oxide-induced vascular dilation.  相似文献   

13.
J. Moreno-Gonzalez 《Genetics》1993,135(1):223-231
Knowledge about the efficiency of generations for estimating marker-associated QTLs is needed for selection. The objective of this paper is to develop a theory to compare the efficiency of segregating generations and testcrosses from the cross of two inbred lines differing in value for a quantitative trait (P(1) X P(2)) for estimating additive, dominance and heterotic effects of QTLs by stepwise regression. An equation that predicts the smallest gene effect in genetic standard deviation units that can be detected with 50% chance at a significance level as a function of the heritability (h(2)) and the recombination frequency (r) of markers was developed for the segregating generations and testcrosses. For estimating additive effects, the most efficient generation was the doubled-haploid (DH) lines; the most inefficient was the North Carolina Design III (NCD III), followed by selfed backcrosses (SB); the selfed families from F(2) individual plants (F(2:3) lines) are inferior to the recombinant inbreds (RI) for low r, but are better than RI for high h(2) and r. Dominance effects are less efficiently estimated than additive effects. The NCD III is better than the SB and the F(2:3) lines for detecting dominance effects. The RI and DH do not estimate dominance effects. The differential heterotic QTL effects of lines P(1) and P(2) when crossed with tester T can be estimated by evaluating testcrosses of individual F(2) plants (F2T), recombinant inbreds (RIT) and double-haploid lines (DHT). The DHT is superior to the other generations. The F2T is better than the RIT for r >/= 0.20, but inferior for r </= 0.1 or low heritability.  相似文献   

14.
The genetic covariance and correlation matrices for five morphological traits were estimated from four populations of fruit flies, Drosophila melanogaster, to measure the extent of change in genetic covariances as a result of directional selection. Two of the populations were derived from lines that had undergone selection for large or small thorax length over the preceding 23 generations. A third population was constituted using flies from control lines that were maintained with equivalent population sizes as the selected lines. The fourth population contained flies from the original cage population from which the selected and control lines had been started. Tests of the homogeneity of covariance matrices using maximum likelihood techniques revealed significant changes in covariance structure among the selected lines. Prediction of base population trait means from selected line means under the assumption of constant genetic covariances indicated that genetic covariances for the small population differed more from the base population than did the covariances for the large population. The predicted small population means diverged farther from the expected means because the additive genetic variance associated with several traits increased in value and most of the genetic covariances associated with one trait changed in sign. These results illustrate that genetic covariances may remain nearly constant in some situations while changing markedly in others. Possible developmental reasons for the genetic changes are discussed.  相似文献   

15.
Artificial selection for short wing was performed in two Drosophila melanogaster populations with partially different gene pools: the C populations were derived from a Canton stock while the H lines were derived from a cross between Canton and a b, cn, vg strain. It is shown that in both populations selection on females (CF, HF) was more effective than selection on males (CM, HM). This difference cannot be explained in terms of differences in additive genetic variability between the two sexes because: (1) both sexes contribute to the genetic variability utilized by selection applied to one sex only, and (2) switching selection pressure on females in the M lines does not result in a response comparable to that obtained in the F populations; this rules out almost completely recombination as the responsible agent for the differences between the selection limits reached by M and F selections.-These results, together with several additional observations concerning sexual dimorphism, fitness and the effect of natural selection, suggest that a complex interaction should be involved in the differential response of M and F lines, controlling the wing length phenotype.  相似文献   

16.
Summary One of two quantitative traits was selected and correlated response in the other trait was measured in each of 30 generations for models of additive genes and of complete dominance. Each trait was controlled by 48 loci with equal effects, segregating independently from frequencies of 0.5 in the initial generation. Intensity of selection regulated the number of offspring from randomly mating 24 males and 24 females each generation. Three each of genetic correlations between traits, intensities of selection, and amounts of environmental variation were simulated.In the additive model correlated responses of the unselected trait to selection of the primary trait agreed closely with responses expected from theoretical considerations. In the model of complete dominance, responses of genotypic means of the unselected trait to selection of the primary trait in opposite directions were quite symmetrical for the first few generations but became distinctly asymmetrical in later generations. With little selection, response was fairly linear but became distinctly curvilinear as intensity of selection increased and environmental variance decreased. Between 15th and 30th generations some gains in the correlated trait to the 15th generation were lost.Michigan Agricultural Experiment Station Journal Article 4847. Part of North Central Regional Project NC-2.  相似文献   

17.
There is mounting evidence consistent with a general role of positive selection acting on the Drosophila melanogaster X-chromosome. However, this positive selection need not necessarily arise from forces that are adaptive to the organism. Nonadaptive meiotic drive may exist on the X-chromosome and contribute to forces of selection. Females from a reference D. melanogaster line, containing the X-linked marker white, were crossed to males from 49 isofemale lines established from seven African and five non-African natural populations to detect naturally occurring meiotic drive. Several lines exhibited a departure from expected Mendelian transmission of X-chromosomes to the third generation (F2) offspring, particularly those from hybrid African male parents. F2 viability was not correlated with skewed chromosomal inheritance. However, a significant difference in viability between cosmopolitan and tropical African crosses was observed. Recombination analysis supports the presence of a male-acting meiotic drive element near the centromeric region of the X-chromosome and putative recessive autosomal drive suppression. There is also evidence of another female-acting drive element linked to white. The possible role meiotic drive may contribute in shaping levels of genetic variation in D. melanogaster, and additional ways to test this hypothesis are discussed.  相似文献   

18.
Genetic Analysis of a Strain of Mice Plateaued for Litter Size   总被引:1,自引:1,他引:0       下载免费PDF全文
J. Eklund  G. E. Bradford 《Genetics》1977,85(3):529-542
A strain of mice (S1) was successfully selected for large litter size for 31 generations, increasing the mean by 4.2 young per litter. After generation 31, there was no further progress and it was concluded that a selection plateau had been reached. Realized heritability decreased during the course of the experiment from 0.16+/-0.06 for the first 15 generations to 0.00+/-0.03 for generations 30 through 45.--In order to explore the nature of the selection plateau, the following groups were derived from line S1 at generation 34 or 35: Upward selection with inbreeding (SF), random (relaxed) selection (SO), and downward selection (SR). Selections were carried out for 10 to 11 generations. The means of SO and SF were similar to those of S1, ruling out any major effect of natural selection or overdominance. SR decreased, the mean averaging 2.3 young per litter below that of S1 during the last three generations. The fact that SR responded to selection indicates that genetic variance was still present in the plateaued population. The SF sublines were crossed when the inbreeding was 95% and a new line, SX, was formed. SX was maintained for three generations and the difference of +0.7 young per litter above the contemporary generations of S1 was significant. The results from this experiment suggest that the selection plateau in line S1 was caused by reduction of additive genetic variance to a very low level. Some nonadditive genetic variance remained, however, and was attributed to recessive alleles at low frequency. In agreement with results reported by Falconer (1971), inbreeding with selection followed by crossing of the inbred sublines proved to be effective in overcoming a selection plateau in litter size.  相似文献   

19.
20.
R. A. Krebs  V. Loeschcke 《Genetics》1996,142(2):471-479
Direct selection for increased resistance to a heat shock (41.9° for 90 min) was carried out using two replicate lines of Drosophila buzzatii that were derived from a large base population. Selected individuals were first acclimated to high temperature before selection, while control individuals were acclimated but not selected, and selection was performed every second generation. Resistance to heat shock with acclimation increased in selected lines. Without acclimation, a correlated smaller increase in heat-shock resistance was suggested. Survival of males was higher than that of females in all lines when tested with acclimation, but with direct exposure to high temperatures, survival of females was greater than that of males both in selection and control lines but not in the base population. From analysis of reciprocal cross progeny between lines, one selection line was found to possess a dominant autosomal factor that significantly increased resistance of males much more than resistance of females. Also suggestive was recessive traits on the X chromosome in both selection lines that increased thermotolerance. No cytoplasmic effects were found. After accounting for other effects, survival of F(1) flies was intermediate, suggesting that additive variation is present for one or more of the autosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号