首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
High-resolution autoradiography has been employed to localize the nonsolubilized but genetically excluded deoxyribonucleic acid (DNA) of T4 bacteriophage superinfecting endonuclease I-deficient Escherichia coli. This DNA was found to be associated with the cell envelope (this term is used here to include all cellular components peripheral to and including the cytoplasmic membrane); in contrast, T4 DNA in primary infected cells, like host DNA in uninfected E. coli, was found to be near the cell center. The envelope-associated DNA from super-infecting phage was not located on the outermost surface of the cell since it was insensitive to deoxyribonuclease added to the medium. These results suggest that DNA from superinfecting T-even phage is trapped within the cell envelope.  相似文献   

2.
Starvation for a required amino acid of normal or RC(str)Escherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RC(rel)E. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RC(str) phenotype but not in cells of RC(rel) phenotype. Inhibition of phage DNA synthesis in amino acid-starved RC(str) host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought.  相似文献   

3.
4.
Wild-type bacteriophage T4 was enriched for mutants which fail to degrade Escherichia coli deoxyribonucleic acid (DNA) by the following method. E. coli B was labeled in DNA at high specific activity with tritiated thymidine ((3)H-dT) and infected at low multiplicity with unmutagenized T4D. At 25 min after infection, the culture was lysed and stored. Wild-type T4 degrades the host DNA and incorporates the (3)H-dT into the DNA of progeny phage; mutants which fail to degrade the host DNA make unlabeled progeny phage. Wild-type progeny are eventually inactivated by tritium decay; mutants survive. Such mutants were found at a frequency of about 1% in the survivors. Eight mutants are in a single complementation group called denA located near gene 63. Four of these mutants which were examined in detail leave the bulk of the host DNA in large fragments. All eight mutants exhibit much less than normal T4 endonuclease II activity. The mutants produce somewhat fewer phage and less DNA than does wild-type T4.  相似文献   

5.
A method was devised for identifying nonlethal mutants of T4 bacteriophage which lack the capacity to induce degradation of the deoxyribonucleic acid (DNA) of their host, Escherichia coli. If a culture is infected in a medium containing hydroxyurea (HU), a compound that blocks de novo deoxyribonucleotide biosynthesis by interacting with ribonucleotide reductase, mutant phage that cannot establish the alternate pathway of deoxyribonucleotide production from bacterial DNA will fail to produce progeny. The progeny of 100 phages that survived heavy mutagenesis with hydroxylamine were tested for their ability to multiply in the presence of HU. Four of the cultures lacked this capacity. Cells infected with one of these mutants, designated T4nd28, accumulated double-stranded fragments of host DNA with a molecular weight of approximately 2 x 10(8) daltons. This mutant failed to induce T4 endonuclease II, an enzyme known to produce single-strand breaks in double-stranded cytosine-containing DNA. The properties of nd28 give strong support to an earlier suggestion that T4 endonuclease II participates in host DNA degradation. The nd28 mutation mapped between T4 genes 32 and 63 and was very close to the latter gene. It is, thus, in the region of the T4 map that is occupied by genes for a number of other enzymes, including deoxycytidylate deaminase, thymidylate synthetase, dihydrofolate reductase, and ribonucleotide reductase, that are nonessential to phage production in rich media.  相似文献   

6.
Experiments utilizing CsCl density gradient analysis and radioactive labels specific for bacteriophage T4 deoxyribonucleic acid (DNA) and membranes have shown that replicative T4 DNA is associated with host membranes. The association is inhibited by chloramphenicol and takes place just prior to semi-conservative replication of the phage DNA.  相似文献   

7.
Replicative Intermediates of Bacteriophage T7 Deoxyribonucleic Acid   总被引:7,自引:5,他引:2       下载免费PDF全文
After infection with bacteriophage T7, parental and newly synthesized deoxyribonucleic acid (DNA) exhibit an extremely fast sedimentation rate in neutral sucrose gradients. This fast-sedimenting component (intermediate I) has a sedimentation constant of about 1,500S and contains T7 DNA as determined by DNA-DNA hybridization experiments. Pulse-chase experiments indicate that the fast-sedimenting material is metabolically active and serves as a precursor to the formation of T7 DNA. Intermediate I contains about 2.5 to 7% of the total 3H-labeled protein formed between 3 and 9.5 min after T7 infection. Treatment of intermediate I with Pronase results in the release of the DNA from the complex. At early times after infection, a second intermediate (intermediate II) can be detected which contains both parental and newly synthesized DNA sedimenting slower than intermediate I but 2 to 3 times as fast as mature T7 DNA. Intermediates I and II containing parental DNA are formed after infection of the nonpermissive host with an amber mutant in gene 1, a gene whose expression is necessary for the synthesis of most T7 proteins. The two intermediates are also observed when infection with T7 wild type is carried out in the presence of chloramphenicol.  相似文献   

8.
Amber (am) mutants of the two closely linked sites, B22 and C125, in bacteriophage T4 gene 43 [deoxyribonucleic acid (DNA) polymerase] synthesize in the nonpermissive (su(-)) Escherichia coli host gene 43 products which are devoid of DNA polymerase activity, but which retain a 3'-exonuclease activity. Diethylaminoethyl-cellulose chromatographic analysis of DNA polymerase and deoxyribonuclease activities from extracts of su(-) cells infected with single- and double-am mutants of T4 gene 43 showed that the exonuclease activity which is observed with amB22 is not seen with double mutants carrying, in addition to amB22, am mutations which map to the clockwise side of the B22 site on the circular genetic map of T4. Similarly, am mutations which map to the clockwise side of the C125 site abolish the exonuclease activity which is observed with an am mutant (amE4335) of this site. It was concluded that in these double mutants termination signals to the clockwise side of amB22 and amE4335 are encountered before the amB22 and amE4335 signals during translation of the messenger ribonucleic acid from T4 gene 43. Thus, it seems that the T4 DNA polymerase is synthesized in vivo in a direction which corresponds to a counterclockwise reading of gene 43.  相似文献   

9.
The degradation of bacterial deoxyribonucleic acid (DNA) was studied after infection of Escherichia coli B with DNA-negative amber mutants of bacteriophage T7. Degradation occurred in three stages. (i) Release of the DNA from a rapidly sedimenting cellular structure occurred between 5 and 6 min after infection. (ii) The DNA was cleaved endonucleolytically to fragments having a molecular weight of about 2 x 10(6) between 6 and 10 min after infection. (iii) These fragments of DNA were reduced to acid-soluble products between 7.5 and 15 min after infection. Stage 1 did not occur in the absence of the gene 1 product (ribonucleic acid polymerase sigma factor), stage 2 did not occur in the absence of the gene 3 product (phage T7-induced endonuclease), and stage 3 did not occur in the absence of the gene 6 product.  相似文献   

10.
The deoxyribonucleic acid (DNA) of Escherichia coli B is converted by colicin E2 to products soluble in cold trichloroacetic acid; we show that this DNA degradation (hereafter termed solubilization) is subject to inhibition by infection with bacteriophage T4. At least two modes of inhibition may be differentiated on the basis of their sensitivity to chloramphenicol. The following observations on the inhibition of E2 by phage T4 in the absence of chloramphenicol are described: (i) Simultaneous addition to E. coli B of E2 and a phage mutated in genes 42, 46, and 47 results in a virtually complete block of the DNA solubilization normally induced by E2; the mutation in gene 42 prevents phage DNA synthesis, and the mutations in genes 46 and 47 block a late stage of phage-induced solubilization of host DNA. (ii) This triple mutant inhibits equally well when added at any time during the E2-induced solubilization. (iii) Simultaneous addition to E. coli B of E2 and a phage mutated only in gene 42 results in extensive DNA solubilization, but the amount of residual acid-insoluble DNA (20 to 25%) is more characteristic of phage infection than of E2 addition (5% or less). (iv) denA mutants of phage T4 are blocked in an early stage (endonuclease II) of degradation of host DNA; when E2 and a phage mutated in both genes 42 and denA are added to E. coli B, extensive solubilization of DNA occurs with a pattern identical to that observed upon simultaneous addition of E2 and the gene 42 mutant. (v) However, delaying E2 addition for 10 min after infection by this double mutant allows the phage to develop considerable inhibition of E2. (vi) Adsorption of E2 to E. coli B is not impaired by infection with phage mutated in genes 42, 46, and 47. In the presence of chloramphenicol, the inhibition of E2 by the triple-mutant (genes 42, 46, and 47) still occurs, but to a lesser extent.  相似文献   

11.
The N(6)-methyladenine (MeAde) and 5-methylcytosine (MeC) contents in deoxyribonucleic acid (DNA) of bacteriophage lambda has been analyzed as a function of host specificity. The following facts have emerged: (i) lambda grown on strains harboring the P1 prophage contain ca. 70 more MeAde residues/DNA molecule than lambda grown either in the P1-sensitive parent, or in a P1 immune-defective lysogen which does not confer P1 modification; (ii) lambda grown on strains harboring the N-3 drug-resistance factor contain ca. 60 more MeC residues/DNA molecule than lambda grown on the parental strain lacking the factor; (iii) lambda grown in Escherichia coli B strains is devoid of MeC, whereas lambda grown in a B (N-3) host contains a high level of MeC; (iv) the MeAde content in lambda DNA is not affected by the N-3 factor. These results suggest that P1 controls an adenine-specific DNA methylase, and that the N-3 plasmid controls a cytosine-specific DNA methylase. The N-3 factor has been observed previously to direct cytosine-specific methylation of phage P22 DNA and E. coli B DNA in vivo; in vitro studies presented here demonstrate this activity.  相似文献   

12.
The morphology of Safferman's virus of blue-green algae (phycovirus LPP-1) has been studied by electron microscopy and physicochemical methods. The virion has a short (100 to 200 A long, 150 A in diameter) forked tail, with an outer sheath, an inner core, and a capital attached to one of the vertices of a polyhedral head. The head capsid edge-to-edge distance is 600 A, based upon internal calibration of the magnification in electron micrographs by use of the line-line spacing of catalase crystals. Measurements of absorbancy and infectivity, and electron microscopy across the band of virus after zone centrifugation on a sucrose gradient, indicated that infectivity was correlated with the short-tailed particles described. The viral deoxyribonucleic acid (DNA) is linear, with a contour length of 13.2 +/- 0.5 mu, measured by the Kleinschmidt method. Its sedimentation coefficient, S(0) (20, w), is 33.4 +/- 0.7 S. These values are consistent with a molecular weight of 27 x 10(6) for the viral DNA. Based upon buoyant density in CsCl and thermal denaturation, the guanine-cytosine content of the DNA is 53%. The viral DNA was used as template for in vitro ribonucleic acid (RNA) synthesis by Escherichia coli RNA polymerase. This RNA annealed to 18% of the sequences in the viral DNA, 0.5% of the sequences in bacteriophage T7 DNA, and 0.25% of the sequences in Plectonema boryanum DNA, at saturating levels of RNA in the Hall-Nygaard hybridization assay. The lack of homology with T7 DNA is of interest because the two viruses are very similar morphologically. The lack of homology with host DNA suggests that this algal virus is a poor candidate for transduction.  相似文献   

13.
Exposure of Escherichia coli cells to myxin results in the almost complete inhibition of new deoxyribonucleic acid (DNA) synthesis, extensive degradation of pre-existing intracellular DNA, and a rapid loss of viability in these cells (9). After exposure to myxin for 30 min (<1% survivors and >25% degradation of DNA), infection of these cells by T4 bacteriophage results in the renewal of DNA synthesis at a rate essentially equal to that found in T4-infected cells in the absence of myxin. This DNA was characterized as T4 DNA by hybridization and by hydroxyapatite chromatography. These results suggest that the primary site of action of myxin does not involve the biochemical pathways involved in either the energy metabolism or the biosynthesis of DNA precursors in the uninfected host cell. The yield of infectious T4 particles was reduced when myxin was present during multiplication. This effect may be partly accounted for by the finding that a significant fraction of the T4 DNA synthesized in the presence of myxin is apparently not properly enclosed by the bacteriophage protein coat since it is shown to be degraded by exogenous nuclease.  相似文献   

14.
The majority of the deoxyribonucleic acid (DNA) of superinfecting T4 bacteriophage which is injected and not hydrolyzed does not attach to host cell membrane. Low levels of association of secondary phage DNA with membrane appear to be related to temporal genetic exclusion.  相似文献   

15.
The effect of bacteriophage SPO1 infection of Bacillus subtilis and a deoxyribonucleic acid (DNA) polymerase-deficient (pol) mutant of this microorganism on the synthesis of DNA has been examined. Soon after infection, the incorporation of deoxyribonucleoside triphosphates into acid-insoluble material by cell lysates was greatly reduced. This inhibition of host DNA synthesis was not a result of host chromosome degradation nor did it appear to be due to the induction of thymidine triphosphate nucleotidohydrolase. Examination of the host chromosome for genetic linkage throughout the lytic cycle indicated that no extensive degradation occurred. After the inhibition of host DNA synthesis, a new polymerase activity arose which directed the synthesis of phage DNA. This new activity required deoxyribonucleoside triphosphates as substrates, Mg2+ ions, and a sulfhydryl reducing agent, and it was stimulated in the presence of adenosine triphosphate. The phage DNA polymerase, like that of its host, was associated with a fast-sedimenting cell membrane complex. The pol mutation had no effect on the synthesis of phage DNA or production of mature phage particles.  相似文献   

16.
Studies were carried out to determine the effect of mutation in the host pol I gene on survival of ultraviolet (UV)-irradiated bacteriophage T4. Whereas a slightly reduced survival was observed in Escherichia coli strain P-3478 (pol A(1)) compared to strain W-3110 (pol A(+)), no such difference was observed in two strains isogenic except for the pol A gene. It was also shown that, whereas bacteriophage T4x is sensitive to UV irradiation, X irradiation, and treatment with methyl-methanesulfonate (MMS), phage T4v(1) is sensitive only to UV irradiation. The survival of damaged phage T4x is neither affected by the presence of the rec A, rec B, or pol A mutations in the host, nor is there evidence that phage T4 effects repair of rec A or pol A mutants previously treated with either UV or MMS.  相似文献   

17.
Serological Relatedness of Bacterial Deoxyribonucleic Acid Polymerases   总被引:4,自引:1,他引:3  
A number of bacterial species have been surveyed for serological activities with antiserum to Escherichia coli B deoxyribonucleic acid (DNA) polymerase I (EC 2.7.7.7.). The degree of serological cross-reaction is taken as a measure of relatedness of both the enzyme molecules from various species and the bacterial species themselves. Extracts were assayed by complement fixation only after treatment with deoxyribonuclease, since DNA bound to DNA polymerase alters the serological activity of the enzyme. Antiserum to E. coli DNA polymerase I did not react with either purified E. coli DNA polymerase II or the phage T4-induced DNA polymerase.  相似文献   

18.
Role of Gene 46 in Bacteriophage T4 Deoxyribonucleic Acid Synthesis   总被引:13,自引:11,他引:2       下载免费PDF全文
In an attempt to establish whether Escherichia coli B infected with N130 (an amber mutant defective in gene 46) is recombination-deficient, the postinfection fate of (14)C-labeled N130 parental deoxyribonucleic acid (DNA) was followed, its amount in complex with the host cell membrane being determined in sucrose gradients after mild lysis of the infected cells. The parental DNA was found to undergo gradual detachment from the membrane during infection. Pulse-chase experiments similarly showed that newly synthesized DNA is normally attached to the host cell membrane and is detached by endonucleolytic breakage at a late stage of infection. The conclusion is that only attached DNA molecules are replicated by membrane-bound replicase, whereas those detached by endonucleolytic breakage are not. It thus seems that the gene 46 product controls the activity of a nuclease whose main function is recombination of DNA nicked by endonuclease, thereby attaching it to the host cell membrane. The rate of T4 DNA synthesis is apparently governed by the efficiency of recombination. Supporting evidence was found in experiments with the double mutant N130 x N134 (genes 46, 33).  相似文献   

19.
Ribonucleic acid (RNA) synthesis primed by bacteriophage T4 or lambda deoxyribonucleic acid (DNA) with Bacillus subtilis RNA polymerase is severely inhibited by high ionic strength. In contrast, RNA synthesis on B. subtilis bacteriophage 2C, SPO1, or phi29 DNA is only moderately affected under similar conditions. The basis of this inhibition lies in the inability of the enzyme to initiate RNA chains with adenosine triphosphate or guanosine triphosphate (ATP, GTP). Binding to templates and the rate of catalysis in high salt after initiation do not seem to be affected. Incorporation of gamma-(32)P-ATP and GTP under a variety of conditions suggests that the specificity of B. subtilis RNA polymerase is different from that of the Escherichia coli enzyme and that it recognizes few promoters on T4 and lambda DNA. Although B. subtilis RNA polymerase initiates RNA chains primarily with ATP or GTP, initiations with pyrimidines can occur on DNA molecules in which hydroxymethyluracil replaces thymine. RNA synthesis on denatured DNA does not seem to be inhibited by high ionic strength, and on native T4 or lambda DNA the inhibition of initiation at constant ionic strength is inversely but not linearly proportional to the ionic radii of cations used to stabilize bihelical DNA to denaturation.  相似文献   

20.
Deoxyribonucleic acid (DNA) from ultraviolet (UV)-irradiated phiX174 sediments in alkali at rates up to 1.7 times that of unirradiated phiX174 DNA and is observed as a condensed, cross-linked structure when examined in the electron microscope by the formamide spreading technique. This structure appears to result from multiple cross-links induced in the tightly coiled DNA contained within the spherical phiX174 capsid. In contrast, the DNA extracted after UV irradiation of the filamentous bacteriophage M13 is not strikingly altered in its sedimentation properties and appears by electron microscopy to be rod-shaped as a result of side-to-side association of the circular DNA. The differences in these UV-induced structures reflect the differences in the packaging of the single-stranded DNA in the two virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号