首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NO-synthase inhibitor L-NNA (2.5 mg/100 g) abolished the protective effects of short-term adaptation to hypoxia (1 h, 5000 m above sea level) on the development of stress-induced disorders on the model of acoustic stress in the Krushinskii-Molodkina rats genetically predisposed to audiogenic seizures. Using the electronic spine resonance method (ESR) we also demonstrated an increase in NO production during short-term hypoxia in the blood and spleen. The results suggest that NO plays a positive role in protective effects of short-term adaptation to hypoxia.  相似文献   

2.
The buccal ganglia of the mollusc, Lymnaea stagnalis, contain two distinct but interacting rhythm-generating units: the central pattern generator for the buccal rhythm and nitrergic B2 neurons controlling gut motility. Nitric oxide (NO) has previously been demonstrated to be involved in the activation of the buccal rhythm. Here, we found that NO-generating substances (SNP and SNAP) activated the buccal rhythm while slowing the endogenous rhythm of B2 bursters. The inhibitor of NO-synthase, L-NNA, the NO scavenger PTIO, or the inhibitor of soluble guanylyl cyclase, ODQ, each produced opposite, depolarising effects on the B2 neuron. In isolated B2 cells, only depolarising effects of substances interfering with NO production or function (PTIO, L-NNA and ODQ) were detected, whereas the NO donors had no hyperpolarising effects. However, when an isolated B2 cell was placed close to its initial position in the ganglion, hyperpolarising effects could be obtained with NO donors. This indicates that extrasynaptic release of some unidentified factor(s) mediates the hyperpolarising effects of NO donors on the B2 bursters. The results suggest that NO is involved in coordination between the radula and foregut movements and that the effects of NO are partially mediated by the volume chemical neurotransmission of as yet unknown origin.  相似文献   

3.
Adaptation to environmental factors possesses multiple NO-dependent protective effects and stimulates the NO storage. An adaptation to a mild stress was shown to reduce the death rate in rats from 57% to 8% and to prevent a heat shock-induced hypotension and endothelial overactivation. Treatment of the rats with the NO-synthase inhibitor L-NNA interfered with the NO storage and formation of protective effects, while the NO donor dinitrosyl iron complex facilitated the NO storage and simulated the adaptive defence. The data obtained suggest an important role of the NO storage in adaptive defence of the organism.  相似文献   

4.
In this work, we evaluated the effect of adaptation to heat on the fall of blood pressure (BP) induced by heat shock (HS) and the interrelation between nitric oxide (NO) and heat shock protein, HSP70. Experiments were carried out on Wistar rats. It was shown that HS resulted in a generalized and transient increase in NO production (the electron paramagnetic resonance method) and a fall of BP from 113+/-3 to 88+/-1 mm Hg (p<0.05). Adaptation to heat itself did not affect BP, but completely prevented the NO overproduction and hypotension induced by HS. The adaptation simultaneously increased the brain NO-synthase content and induced HSP70 synthesis (the Western blot analysis) in various organs. Both the antihypotensive effects of adaptation and HSP70 accumulation were completely prevented by L-NNA, an inhibitor of NO synthesis, or quercetin, an inhibitor of HSP70 synthesis. The data suggest that adaptation to heat stimulates NO synthesis and NO activates synthesis of HSP70. HSP70, which hampers NO overproduction, thus restricts the BP fall induced by heat shock.  相似文献   

5.
Heat shock potentiated the nitric oxide production (EPR assay) in the liver, kidney, heart, spleen, intestine, and brain. The heat shock-induced sharp transient increase in the rate of nitric oxide production preceded the accumulation of heat shock proteins (HSP70) (Western blot analysis) as measured in the heart and liver. In all organs the nitric oxide formation was completely blocked by the NO-synthase inhibitor (L-NNA). L-NNA also markedly attenuated the heat shock-induced accumulation of HSP70. The results suggests that nitric oxide is involved in the heat shock-induced activation of HSP70 synthesis.  相似文献   

6.
The potential difference across the stomach wall (PD) is determined by the gastric mucosal barrier. The decrease in the PD evoked by "the barrier breakers", e.g. aspirin, ethanol or bile acids is believed as a sensitive index of the mucosal damage. The effect of glyceryl trinitrate (GTN), isosorbide dinitrate (IDN) and molsidomine (MOL)--all exogenous donors of nitric oxide (NO), as well as L-arginine (L-ARG), which is a substrate for NO-synthase and Nomega-nitro-L-arginine (L-NNA), a non-selective NO synthase inhibitor on the gastric electrolyte barrier were studied against the gastric damage induced by ethanol. All NO donors given intragastrically alone caused only moderate, not significant changes in the PD and failed to affect the mucosal barrier, while L-NNA slightly decreased the PD. The NO donors and L-arginine applied as pretreatment prior to ethanol resulted in diminishing of its damaging action that was similar for all these drugs, while L-NNA intensified both the injury and the drop in the PD values caused by ethanol. In summary, our results showed the protective effect of endogenous nitric oxide from L-ARG and that originating from GTN, MOL and IDN on the gastric electrolyte barrier, supporting involvement of nitric oxide in the mechanism of gastric protection in the stomach.  相似文献   

7.
The pharynx is very important for elicitation of reflex swallowing. The region of the pharynx is innervated by the pharyngeal branch of the glossopharyngeal nerve (GPN-ph). Nitric oxide (NO) plays an important role in various physiological functions. The purpose of this study is to investigate the contribution of NO to reflex swallowing evoked by electrical stimulation of the GPN-ph. Swallowing was evoked in urethane-anesthetized rats by application of repetitive electrical stimulation (10- to 20-microA amplitude, 10- to 20-Hz frequency, 1.0-ms duration) to the central cut end of the GPN-ph or superior laryngeal nerve. Swallowing was identified by electromyographic activity of the mylohyoid muscle. Latency to the first swallow and the interval between swallows were measured. Intravenous administration of N(G)-nitro-L-arginine (L-NNA, 0.6 mg/kg), a nonselective inhibitor of NO synthase (NOS), extremely prolonged latency to the first swallow and the interval between swallows evoked by the GPN-ph. Intraperitoneal administration of 7-nitroindazole (5.0 mg/kg), a selective inhibitor of neuronal NOS, significantly prolonged latency to the first swallow and the interval between swallows evoked by the GPN-ph. Administration of L-arginine (an NO donor, 500 mg/kg) and sodium nitroprusside (an NO releaser, 0.6 mg/kg) restored the suppression of swallowing induced by the NOS inhibitor. Superior laryngeal nerve-evoked swallowing was suppressed by administration of a higher dose of L-NNA (6.0 mg/kg). Swallowing evoked by water stimulation of the pharynx was also suppressed by L-NNA (0.6 mg/kg). These results suggest that NO plays an important role in signal processing for initiation of reflex swallowing from the pharynx.  相似文献   

8.
In rats of Krushinsky-Molodkina strain (KMR), the audiogenic stress induced epileptiform seizure and development of acute disturbances of cerebral circulation of hemorrhagic nature. The inhibitor of NO-synthase (L-NNA) increased the severity of clinical symptoms, mortality, and the intensity of intracranial hemorrhages. In contrast, L-arginine elevated the resistance of KMRs to acoustic stress. The intensity of nitrergic innervation was analyzed in preparations of the middle cerebral artery with the use of histochemical NADPH-diaphorase staining. In preparations of control KMRs, a net of NADPH-positive perivascular nerve fibers was found, while in experimental KMRs, in an hour after sound stimulation, such fibers practically were not revealed. Preliminary exposure of KMRs in hypoxic conditions (1 hour in hypobaric chamber at simulated altitude of 5000 m above the sea level) decreased the development of stress lesions. The protective effect of hypoxic training disappeared after the administration of NO-synthase inhibitor (L-NNA). The study demonstrated participation of nitric oxide (NO) in adaptive reactions of cerebral hemodynamics linked with the significant increase of cerebral blood flow.  相似文献   

9.
In Sprague-Dawley rats, by means of in vivo microdialysis combined with HPLC analysis, it was shown that acquisition and expression of conditioned emotional response resulted in increase in extracellular level of citrulline: a nitric oxide co-product, in the nucleus accumbens. The rise extracellular citrulline caused by the acquisition of the response was significantly reduced by intraaccumbens infusion of 7-nitroindasole (0.5 mM), a selective inhibitor of neuronal NO-synthase, and completely prevented by intraaccumbens infusion of N-nitroarginine (0.5 mM): a nonselective NO-synthase inhibitor. The increase in citrulline extracellular level cased by expression of the conditioned emotional response is completely prevented by infusion of both NO-synthase inhibitors. The data obtained suggest that the acquisition and the expression of the conditioned emotional response increase the production of nitric oxide in the n. accumbens, predominantly due to activation of the neuronal NO-synthase.  相似文献   

10.
研究青霉素诱发培养的海马CA1区神经元细胞产生的一氧化氮(NO)在兴奋过程中的抑制机制。用激光扫描共聚焦显微镜观察发现100IU/ml的青霉素可诱发一种晚而慢的NO合成模式。NO合成酶抑制剂L-NNA(0-10μmol/L)可剂量依赖地抑制NO的合成,并促进谷氨酸水的升高。同时发现L-NAA(1、10μmol/L)可显著促进进蛋氨酸脑啡肽(M-ENK)的升高),而对强啡肽-B(DYN-B)的水平没有影响。100μmol/L的β-FNA(一种M-ENK受体抑制剂)可抑制L-NNA诱导的谷氨酸水平的升高,而100μmol/L的nor-BIN(一种DYNU受体抑制剂)对此没有影响。以上结果提示:1000IU/ml的青霉素诱导合成的NHO可通过抑制M-ENK水平来抑制神经元的兴奋。  相似文献   

11.

Background

Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS)-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC) nerve stimulation.

Methods

Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz)-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM). Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine.

Results

EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P < 0.01 all). In contrast, the arginase inhibitor nor-NOHA increased EFS-induced relaxation by 3.3 ± 1.2-fold at 0.5 Hz to 1.2 ± 0.1-fold at 4 Hz (P < 0.05 all), which was reversed by L-NNA to the level of control airways in the presence of L-NNA (P < 0.01 all). Similar to nor-NOHA, exogenous L-arginine increased EFS-induced airway relaxation (P < 0.05 all).

Conclusion

The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.  相似文献   

12.
Nitric oxide (NO) plays essential roles in many biotic and abiotic stresses in plant development procedures, including pollen tube growth. Here, effects of NO on cold stress inhibited pollen germination and tube growth in Camellia sinensis were investigated in vitro. The NO production, NO synthase (NOS)-like activity, cGMP content and proline (Pro) accumulation upon treatment with NO scavenger cPTIO, NOS inhibitor L-NNA, NO donor DEA NONOate, guanylate cyclase (GC) inhibitor ODQ or phosphodiesterase (PDE) inhibitor Viagra at 25°C (control) or 4°C were analyzed. Exposure to 4°C for 2 h reduced pollen germination and tube growth along with increase of NOS-like activity, NO production and cGMP content in pollen tubes. DEA NONOate treatment inhibited pollen germination and tube growth in a dose-dependent manner under control and reinforced the inhibition under cold stress, during which NO production and cGMP content promoted in pollen tubes. L-NNA and cPTIO markedly reduced the generation of NO induced by cold or NO donor along with partly reverse of cold- or NO donor-inhibited pollen germination and tube growth. Furthermore, ODQ reduced the cGMP content under cold stress and NO donor treatment in pollen tubes. Meanwhile, ODQ disrupted the reinforcement of NO donor on the inhibition of pollen germination and tube growth under cold condition. Additionally, Pro accumulation of pollen tubes was reduced by ODQ compared with that receiving NO donor under cold or control condition. Effects of cPTIO and L-NNA in improving cold-treated pollen germination and pollen tube growth could be lowered by Viagra. Moreover, the inhibitory effects of cPTIO and L-NNA on Pro accumulation were partly reversed by Viagra. These data suggest that NO production from NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhibited tube growth and reduced Pro accumulation, partly via cGMP signaling pathway in C. sinensis.  相似文献   

13.
We characterized effects of nitric oxide synthase (NOS) substrate L-arginine and classical inhibitors of mammalian NOS on nitric oxide (NO) biosynthesis in probiotic bacteria Lactobacillus plantarum 8P-A3. NO-synthase origin of nitric oxide detected by fluorescent NO indicator 1,2-diaminoanthraquinone (DAA) was confirmed by induction of NO production by exogenous L-arginine. None of the used inhibitors of three isoforms of mammalian NOSs (L-NAME, L-NIL, nNOS inhibitor I) showed significant inhibitory effect of lactobacillar NO-synthase activity.  相似文献   

14.
The present experiments tested nitric oxide (NO) effects on shortening velocity and power production in maximally activated rat diaphragm at 37 degrees C. Diaphragm fiber bundles (n = 10/group) were incubated at 37 degrees C in Krebs-Ringer solution containing no added drug (control), the NO synthase inhibitor Nomega-nitro-L-arginine (L-NNA; 10 mM), the NO donor sodium nitroprusside (SNP; 1 mM), or a combination (L-NNA + SNP). Loaded shortening velocity was measured via the load-clamp technique over a range of afterloads. Unloaded shortening velocity (Vo) was measured in control and L-NNA-treated bundles (n = 12/group) by using the slack test. Force-velocity data fitted to the Hill equation determined a Vmax of 13.7+/-0.4 lengths/s, contradicting the notion that rat diaphragm Vmax declines at temperatures > 35 degrees C. In contrast, L-NNA decreased Vmax (P < 0.05), loaded shortening velocity (P < 0.001), and power production (P < 0.001), but did not change Vo or maximal isometric force. All L-NNA effects were prevented by coincubating fiber bundles with L-NNA + SNP. SNP alone had no effect on any variable. These data indicate that endogenous NO is essential for optimal myofilament function during active shortening.  相似文献   

15.
This study was conducted to study the influence of dietary L-N(omega)nitroarginine (L-NNA), a nitric oxide (NO) synthase inhibitor, on serum lipids and lipoproteins and on the activities of enzymes related to lipid metabolism in rats. Feeding rats a diet containing 0.2 g/kg L-NNA for 5 weeks elevated serum concentrations of triglyceride, cholesterol, phospholipid, and free fatty acid and reduced serum nitrate (an oxidation product of NO). The elevation in serum triglyceride was mainly due to the elevation in very low density lipoprotein (VLDL) triglyceride. Contents of cholesterol and phospholipid in the VLDL fraction also were elevated by L-NNA. L-NNA treatment caused significantly higher activity of hepatic microsomal phosphatidate phosphohydrolase (the rate-limiting enzyme in triglyceride synthesis) and lower activity of hepatic carnitine palmitoyltransferase (the rate-limiting enzyme in fatty acid oxidation). Activities of hepatic enzymes responsible for fatty acid synthesis such as glucose-6-phosphate dehydrogenase, malic enzyme, and fatty acid synthase were unaffected by L-NNA. The activity of hepatic microsomal phosphocholine cytidyltransferase (the rate-limiting enzyme in phosphatidylcholine synthesis) was reduced significantly by L-NNA. Our results suggest that lower NO production caused the elevations in hepatic triglyceride synthesis by higher esterification of fatty acid and lower fatty acid oxidation, leading to an enrichment of VLDL triglyceride.  相似文献   

16.
Hypoxia causes a regulated decrease in body temperature (T(b)), and nitric oxide (NO) is now known to participate in hypoxia-induced hypothermia. Hypoxia also inhibits lipopolysaccharide (LPS)-induced fever. We tested the hypothesis that NO may participate in the hypoxia inhibition of fever. The rectal temperature of awake, unrestrained rats was measured before and after injection of LPS, with or without concomitant exposure to hypoxia, in an experimental group treated with N(omega)-nitro-L-arginine (L-NNA) for 4 consecutive days before the experiment and in a saline-treated group (control). L-NNA is a nonspecific NO synthase inhibitor that blocks NO production. LPS caused a dose-dependent typical biphasic rise in T(b) that was completely prevented by hypoxia (7% inspired oxygen). L-NNA caused a significant drop in T(b) during days 2-4 of treatment. When LPS was injected into L-NNA-treated rats, inhibition of fever was observed. Moreover, the effect of hypoxia during fever was significantly reduced. The data indicate that the NO pathway plays a role in hypoxia inhibition of fever.  相似文献   

17.
Impairment of blood perfusion in gastric mucosa results in the formation of erosions and ulcers. Nitric oxide (NO), produced via activity of NO-synthase (NOS), appears to be a one of major factors, involved in the regulation of the gastric blood flow (GBF). Inhibition of this enzyme by N-nitro-L-arginine (L-NNA) results in local decrease of NO production, reduces GBF and impairs gastric mucosal integrity, the effects that can be reversed by the pretreatment with L-arginine, the NOS substrate. However, little information is available regarding the contribution of reactive oxygen species (ROS)-induced lipid peroxidation and NO to the mechanism of gastric mucosal integrity. Therefore, the aim of our present study was to determine the action of pentoxyfilline (PTX), an inhibitor of tumor necrosis factor alpha (TNFalpha) with or without NOS inhibition by L-NNA administration in rats with water immersion and restraint stress (WRS)-induced gastric lesions. Experiments were carried out on 100 male Wistar rats. The gastric blood flow (GBF) was measured using laser Doppler flowmeter. The area of gastric lesions was determined by planimetry and the levels of proinflammatory cytokines (IL-1beta and TNFalpha) were measured by ELISA. Colorimetric assays were employed to determine gastric mucosal levels of lipid peroxidation products, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) and antioxidant enzymes including superoxide dismutase (SOD) activity, as well as tissue concentration of reduced glutathione (GSH). Administration of PTX significantly attenuated the gastric lesions, induced by 3.5 h of WRS and this was accompanied by the rise in the GBF and a significant decrease in plasma proinflammatory cytokines (IL-1beta and TNFalpha) levels, as well as the reduction of lipid peroxidation. Exposure of rats to WRS suppressed the SOD and GSH activities and these effects were reversed by PTX. The protective and hyperemic effects of PTX, as well as an increase in mucosal SOD activity and GSH concentration were counteracted by pretreatment with L-NNA, but restored by the pretreatment with L-arginine, a NOS substrate. We conclude that PTX exerts beneficial, gastroprotective effect against WRS-induced gastric lesions due to enhancement in gastric microcirculation, possibly mediated by the enhanced NOS activity as well as local action of NO and by the attenuation of oxidative metabolism and generation proinflammatory cytokines.  相似文献   

18.
Endothelium-dependent vasorelaxation in large vessels is mainly attributed to Nomega-nitro-L-arginine methyl ester (L-NAME)-sensitive endothelial nitric oxide (NO) synthase (eNOS)-derived NO production. Endothelium-derived hyperpolarizing factor (EDHF) is the component of endothelium-dependent relaxations that resists full blockade of NO synthases (NOS) and cyclooxygenases. H2O2 has been proposed as an EDHF in resistance vessels. In this work we propose that in mice aorta neuronal (n)NOS-derived H2O2 accounts for a large proportion of endothelium-dependent ACh-induced relaxation. In mice aorta rings, ACh-induced relaxation was inhibited by L-NAME and Nomega-nitro-L-arginine (L-NNA), two nonselective inhibitors of NOS, and attenuated by selective inhibition of nNOS with L-ArgNO2-L-Dbu-NH2 2TFA (L-ArgNO2-L-Dbu) and 1-(2-trifluoromethylphehyl)imidazole (TRIM). The relaxation induced by ACh was associated with enhanced H2O2 production in endothelial cells that was prevented by the addition of L-NAME, L-NNA, L-ArgNO2-L-Dbu, TRIM, and removal of the endothelium. The addition of catalase, an enzyme that degrades H2O2, reduced ACh-dependent relaxation and abolished ACh-induced H2O2 production. RT-PCR experiments showed the presence of mRNA for eNOS and nNOS but not inducible NOS in mice aorta. The constitutive expression of nNOS was confirmed by Western blot analysis in endothelium-containing vessels but not in endothelium-denuded vessels. Immunohistochemistry data confirmed the localization of nNOS in the vascular endothelium. Antisense knockdown of nNOS decreased both ACh-dependent relaxation and ACh-induced H2O2 production. Antisense knockdown of eNOS decreased ACh-induced relaxation but not H2O2 production. Residual relaxation in eNOS knockdown mouse aorta was further inhibited by the selective inhibition of nNOS with L-ArgNO2-L-Dbu. In conclusion, these results show that nNOS is constitutively expressed in the endothelium of mouse aorta and that nNOS-derived H2O2 is a major endothelium-dependent relaxing factor. Hence, in the mouse aorta, the effects of nonselective NOS inhibitors cannot be solely ascribed to NO release and action without considering the coparticipation of H2O2 in mediating vasodilatation.  相似文献   

19.
Previous studies suggest that abscisic acid (ABA) stimulates the activities of antioxidant enzymes under normal and chilling temperature and enhanced chilling resistance in Stylosanthes guianensis. The objective of this study was to test whether nitric oxide (NO) is involved in the ABA-induced activities of the antioxidant enzymes in Stylosanthes guianensis due to its nature as a second messenger in stress responses. Plants were treated with NO donors, ABA, ABA in combination with NO scavengers or the nitric oxide synthase (NOS) inhibitor and their effects on the activity of antioxidant enzymes and NO production were compared. The results showed that ABA increased the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The effect of ABA on antioxidant enzyme activities was suppressed by the NOS inhibitor, N(omega)-nitro-L-arginine (L-NNA), and the NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO). NO content increased after 5 h of ABA treatment. The NO-scavenger, PTIO, and the NOS-inhibitor, L-NNA, inhibited the accumulation of NO in ABA-treated Stylosanthes guianensis. NO donor treatment enhanced the activities of SOD, CAT, and APX. The results suggested that NO was involved in the ABA-induced activities of SOD, CAT, and APX in Stylosanthes guianensis. ABA triggered NO production that may lead to the stimulation of antioxidant enzyme activities.  相似文献   

20.
CCK exhibits a potent cytoprotective activity against acute gastric lesions, but its role in ulcer healing has been little examined. In this study we determined whether exogenous CCK or endogenously released CCK by camostate, an inhibitor of luminal proteases, or by the diversion of pancreatico-biliary secretion from the duodenum, could affect ulcer healing. In addition, the effects of antagonism of CCK-A receptors (by loxiglumide, LOX) or CCK-B receptors (by L-365,260), an inhibition of NO-synthase by N(G)-nitro-L-arginine (L-NNA), or sensory denervation by large neurotoxic dose of capsaicin on CCK-induced ulcer healing were examined. Gastric ulcers were produced by serosal application of acetic acid and animals were sacrificed 9 days after ulcer induction. The area of ulcers and blood flow at the ulcer area were determined. Plasma levels of gastrin and CCK and luminal somatostatin were measured by RIA and mucosal biopsy samples were taken for histological evaluation and measurement of DNA synthesis. CCK given s.c. reduced dose dependently the ulcer area; the threshold dose of CCK being 1 nmol/kg and the dose inhibiting this area by 50% being 5 nmol/kg. This healing effect of CCK was accompanied by a significant increase in the GBF at ulcer margin and the rise in luminal NO production, plasma gastrin level and DNA synthesis. Concurrent treatment with LOX, completely abolished the CCK-8-induced acceleration of the ulcer healing and the rise in the GBF at the ulcer margin, whereas L-365,260 remained without any influence. Treatment with camostate or diversion of pancreatic juice that raised plasma CCK level to that observed with administration of CCK-8, also accelerated ulcer healing and this effect was also attenuated by LOX but not by L-365,260. Inhibition of NO-synthase by L-NNA significantly delayed ulcer healing and reversed the CCK-8 induced acceleration of ulcer healing, hyperemia at the ulcer margin and luminal NO release, and these effects were restored by the addition to L-NNA of L-arginine but not D-arginine. Capsaicin denervation attenuated CCK-induced ulcer healing, and the accompanying rise in the GBF at the ulcer margin and decreased plasma gastrin and luminal release of somatostatin when compared to those in rats with intact sensory nerves. Detectable signals for CCK-A and B receptor mRNAs as well as for cNOS mRNA expression were recorded by RT-PCR in the vehicle control gastric mucosa. The expression of CCK-A receptor mRNA and cNOS mRNA was significantly increased in rats treated with CCK-8 and camostate, whereas CCK-B receptor mRNA remained unaffected. We conclude that CCK accelerates ulcer healing by the mechanism involving upregulation of specific CCK-A receptors, enhancement of somatostatin release, stimulation of sensory nerves and hyperemia in the ulcer area, possibly mediated by NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号