首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium [( Ca2+]i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of [3H]inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ [( Ca2+]o) was less than 100 nM, AII still rapidly increased [Ca2+]i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When [Ca2+]o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused [Ca2+]i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low [Ca2+]o, ionomycin pretreatment abolished both the [Ca2+]i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of [Ca2+]i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of [3H]Ins(1,4,5)P3. We conclude that AII increased [Ca2+]i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.  相似文献   

2.
The effect of halothane on the regulation of blood platelet free cytosolic calcium was investigated in Quin-2-loaded cells from patients susceptible to Malignant Hyperthermia (MH) and healthy controls, respectively. The resting level of free cytosolic calcium was slightly, but statistically significantly, enhanced in platelets from patients (90 +/- 10 nM vs 110 +/- 35 nM). Halothane induced a dose-dependent, rapid Ca2+ release from intracellular stores both in normal and in MH derived cells, but the resulting increase in cytosolic calcium was significantly higher in the latter (2 mM halothane: [Ca2+]i = 117 +/- 12 nM vs 218 +/- 117 nM; 4 mM halothane: 225 +/- 35 nM vs. 417 +/- 201 nM). Whereas in platelets from healthy donors a complete reversibility of the halothane effect could be observed within 30-45 min, the cytosolic Ca2+ transients in platelets from patients were different from those in normals either in a higher initial peak or in a diminished decline velocity or in both. The basal Ca2+ permeability of the platelet plasma membrane was very low. Generally, halothane caused a dose-dependent increase in Ca2+ permeability. However, the influx of external calcium was significantly higher in platelets from patients than in controls (2 mM halothane: delta [Ca2+]i = 69 +/- 12 nM vs 135 +/- 63 nM; 4 mM halothane: 127 +/- 33 nM vs. 258 +/- 111 nM). Combining the results, the suggestion can be made that susceptibility to MH is characterized by a generalized membrane defect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The cytosolic Ca2+ activity of insulin-releasing clonal cells (RINm5F) was studied with the intracellular fluorescent indicator quin-2. When the extracellular Ca2+ concentration was 1 mM, the basal cytosolic Ca2+ activity was 101 +/- 5 nM. Depolarization with 25 mM K+ increased this Ca2+ activity to at least 318 nM, an effect completely reversed by the voltage-dependent channel blocker D-600. In the presence of K+ alone these channels appeared to have a half-life of 6.7 +/- 0.8 min. In contrast to the action of K+, exposure of the RINm5F cells to 4 mM glucose resulted in a reduction of the cytosolic Ca2+ activity. This effect was observed during K+ depolarization but was more pronounced under basal conditions when it amounted to 20%. The data provide the first direct evidence that glucose can decrease the cytosolic Ca2+ activity in beta-cells. Unlike the case in normal beta-cells the glucose effect on the voltage-dependent Ca2+ channels in the RINm5F cells is apparently not sufficient to overcome the intracellular buffering of Ca2+. A defective depolarization is therefore a probable cause of the failing insulin secretion of RINm5F cells exposed to glucose.  相似文献   

4.
The secretion of parathyroid hormone (PTH) is suppressed in bovine parathyroid cells by raised extracellular [Ca2+], and 12-0-tetradecanoyl-phorbol-13-acetate (TPA) stimulates the release of PTH from cells suppressed by high extracellular [Ca2+]. Extracellular and cytosolic free [Ca2+] are proportionally related in intact cells. To assess the role of cytosolic free [Ca2+] on PTH secretion, bovine parathyroid cells were rendered permeable by brief exposure to an intense electric field. PTH secretion was comparable at 40 nM, 500 nM, 5 microM, 28 microM, 0.5 mM and 2 mM [Ca2+] (release of total cellular PTH 3.7 +/- 0.5%, 3.9 +/- 0.4%, 3.4% +/- 0.3%, 3.9 +/- 0.4%, 3.1 +/- 0.3%, 3.5 +/- 0.7%, respectively), but the secretion was stimulated twofold (P less than 0.05 vs. control) in a dose and ATP dependent manner with TPA (100 nM) and cyclic AMP (1 mM). As a result, free [Ca2+] in the range of those observed in intact cells during regulation of PTH secretion by changes of extracellular [Ca2+] did not affect the release of PTH in permeabilized cells. The [Ca2+] independent stimulation of PTH release by TPA and cyclic AMP indicates that changes of cytosolic free [Ca2+] may represent a secondary event not related to the regulation of PTH secretion.  相似文献   

5.
ANF did not prevent the formation of [3H] inositol trisphosphate in response to AII but inhibited aldosterone secretion in calf adrenal glomerulosa cells. 8-bromo cGMP did not affect either inositol phosphate formation or aldosterone secretion. Changes in cytosolic Ca++ concentration induced by AII, as measured by Quin 2 fluorescence, were also unaffected by ANF. No difference in adrenal cell protein phosphorylation with AII or AII + ANF was observed. The results suggest that ANF may inhibit aldosterone secretion through a non-guanyl cyclase linked receptor system not involving the formation of phosphoinositide-derived second messengers. Interference with protein kinase C activity cannot be ruled out.  相似文献   

6.
We have monitored cytosolic [Ca2+] and dopamine release in intact fura- 2-loaded glomus cells with microfluoroimetry and a polarized carbon fiber electrode. Exposure to low PO2 produced a rise of cytosolic [Ca2+] with two distinguishable phases: an initial period (with PO2 values between 150 and approximately 70 mm Hg) during which the increase of [Ca2+] is very small and never exceeds 150-200 nM, and a second phase (with PO2 below approximately 70 mm Hg) characterized by a sharp rise of cytosolic [Ca2+]. Secretion occurs once cytosolic [Ca2+] reaches a threshold value of 180 +/- 43 nM. The results demonstrate a characteristic relationship between PO2 and transmitter secretion at the cellular level that is comparable with the relation described for the input (O2 tension)output (afferent neural discharges) variables in the carotid body. Thus, the properties of single glomus cells can explain the sensory functions of the entire organ. In whole-cell, patch- clamped cells, we have found that in addition to O2-sensitive K+ channels, there are Ca2+ channels whose activity is also regulated by PO2. Ca2+ channel activity is inhibited by hpoxia, although in a strongly voltage-dependent manner. The average hypoxic inhibition of the calcium current in 30% +/- 10% at -20 mV but only 2% +/- 2% at +30 mV. The differential inhibition of K+ and Ca2+ channels by hypoxia helps to explain why the secretory response of the cells is displaced toward PO2 values (below approximately 70 mm Hg) within the range of those normally existing in arterial blood. These data provide a conceptual framework for understanding the cellular mechanisms of O2 chemotransduction in the carotid body.  相似文献   

7.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

8.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

9.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

10.
The response of cytosolic calcium [Ca2+]i to angiotensin II (AII) and potassium (K+) in individual rat glomerulosa cells was determined using the calcium-sensitive fluorescent dye, fura-2 and digital imaging. Control (4 mM K+) cytosolic calcium levels were generally in the 80-120 nM range and increased monotonically as [K+] was increased from 4 to 12 mM. There was no delay in the onset of the response. In most cells the [Ca2+]i decreased from its peak after 3-4 min, even in the presence of superfusate containing elevated K+. The time course of the change in [Ca2+]i in response to AII stimulation, on the other hand, was more variable. It was most often characterized by an early decrease followed by a large delayed increase. The response also was observed to decline during sustained AII stimulation. The majority of the cells showed some response to one or the other secretagogue with a sizeable minority (25%) having an increase in [Ca2+]i in excess of 200%. While the majority showed a response, the cell to cell variation was substantial. Finally, the pattern of cytosolic calcium increase sometimes showed a marked dependence on the secretagogue used, with different regions of the same cell being more strongly affected by one agent or the other. A few cells (10%) responded to AII only at one pole, establishing a large concentration gradient of calcium across the cell. Because of differences in time course, pattern, and degree of responsiveness, it is likely that the mechanisms underlying the Ca2+ elevation with K+ and AII are different.  相似文献   

11.
The present study was designed to assess the effect of okadaic acid (OA), a protein phosphatase inhibitor, on aldosterone secretion in response to angiotensin II (AII), adrenocorticotropin (ACTH) and rises in external potassium concentration (K+). AII (10nM) caused a 20-fold increase in aldosterone production and OA reduced this response by 45%. ACTH (10nM) caused an 8.6-fold increase in aldosterone secretion and OA reduced this by 83%. Increasing K+ concentration from 3 to 12mM caused a 13-fold increase in aldosterone production, which OA inhibited by 36%. These results suggest that protein phosphatases participate in the control of adrenal steroid production, even though ACTH, AII and K+ act via different intracellular messenger systems.  相似文献   

12.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

13.
In this study we have investigated various components of the stimulus-secretion coupling process leading to aldosterone secretion from the calf adrenal glomerulosa cells as evoked by angiotensin II (AII) and potassium (K+). The roles of Ca2+, calmodulin and protein kinase C in the sustained phase rather than initiation of aldosterone secretion were of special interest. Our investigations revealed that the reduction of extracellular Ca2+ by EGTA or interruption of Ca2+ influx by nitrendipine at various time points after stimulation with either AII or K+ markedly compromised aldosterone secretion. Calmodulin inhibitors, calmidazolium and W-7 reduced aldosterone secretion profoundly. Agonists of protein kinase C, phorbol ester or diacylglycerol analogues failed to stimulate aldosterone secretion while the protein kinase C inhibitor, H-7, only partially inhibited aldosterone secretion at a concentration which completely inhibited protein kinase C activity. Calmodulin inhibitors produced significantly greater inhibition of aldosterone secretion than inhibitors of protein kinase C.  相似文献   

14.
TRH stimulation of prolactin release from GH3 cells is dependent on Ca2+; however, whether TRH-induced influx of extracellular Ca2+ is required for stimulated secretion remains controversial. We studied prolactin release from cells incubated in medium containing 110 mM K+ and 2 mM EGTA which abolished the electrical and Ca2+ concentration gradients that usually promote Ca2+ influx. TRH caused prolactin release and 45Ca2+ efflux from cells incubated under these conditions. In static incubations, TRH stimulated prolactin secretion from 11.4 +/- 1.2 to 19 +/- 1.8 ng/ml in control incubations and from 3.2 +/- 0.6 to 6.2 +/- 0.8 ng/ml from cells incubated in medium with 120 mM K+ and 2 mM EGTA. We conclude that Ca2+ influx is not required for TRH stimulation of prolactin release from GH3 cells.  相似文献   

15.
The regulation of cytosolic free Ca2+ concentration ([Ca2+]c) by intracellular organelles was studied in permeabilized bovine adrenal glomerulosa cells. Two compartments, with distinct characteristics, were able to pump Ca2+. A first pool, sensitive to ruthenium red and presumably mitochondrial, required respiratory chain substrates to maintain [Ca2+]c around 700 nM. Ca2+ efflux from this compartment was activated by Na+ (ED50 = 5 mM). Inositol 1,4,5-trisphosphate (IP3) had no effect on this pool. A second nonmitochondrial pool required ATP to lower [Ca2+]c to about 200 nM and released Ca2+ transiently upon addition of IP3. When the two systems were allowed to work simultaneously, the nonmitochondrial pool regulated [Ca2+]c and IP3 released Ca2+ in a concentration-dependent manner (EC50 = 0.6 microM). Under these conditions the mitochondria seemed Ca2+ depleted. Upon repeated stimulations with IP3, a marked attenuation of the response was observed. This phenomenon was due to Ca2+ sequestration by a nonmitochondrial IP3-insensitive pool. Neither dantrolene (200 microM) nor 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (10 microM) were able to abolish IP3-induced Ca2+ release, though both compounds efficiently inhibited aldosterone production in intact cells stimulated with angiotensin II (10 nM) or K+ (12 mM). These results suggest that in permeabilized adrenal glomerulosa cells: the nonmitochondrial pool is responsible for buffering [Ca2+]c and for releasing Ca2+ in response to IP3; at resting [Ca2+]c levels, the mitochondria appear Ca2+ depleted; when [Ca2+]c rises above their set point, the mitochondria accumulate Ca2+ as a function of [Na+]c; 4) the mitochondria are not involved in the desensitization mechanism of the response to IP3.  相似文献   

16.
The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol phosphates (K0.5 approximately 10 microM and approximately 10 nM respectively) and a rapid increase in cytosolic Ca2+ as determined by quin2 fluorescence. In NG108-15 cells, BK alone stimulated a pertussis-toxin-insensitive accumulation of inositol phosphates (K0.5 approximately 10 nM) under conditions in which pertussis toxin completely inhibited MR-mediated inhibition of adenylate cyclase. BK also stimulated a rapid increase in cytosolic Ca2+ in NG108-15 cells. In contrast, no MR-mediated increase in phosphoinositide hydrolysis or change in cytosolic Ca2+ concentration was observed in NG108-15 cells. These results support the idea that MR selectively interact with either the cyclic AMP or the inositol phosphate second-messenger systems.  相似文献   

17.
The patterns of agonist-induced elevations of cytosolic free Ca2+ ([Ca2+]i) were characterized and compared by the use of single adrenal chromaffin cells. Initial histamine- or angiotensin II (AII)-induced elevations of [Ca2+]i were equal in magnitude (peaks 329 +/- 20 [SE] and 338 +/- 46 nM, respectively). These initial increases of [Ca2+]i were transient, insensitive to either Gd3+ or removing external Ca2+, and were primarily the result of Ca2+ release from intracellular stores. After the initial peak(s) of [Ca2+]i, a second phase of moderately elevated [Ca2+]i was observed, and this response was sensitive to either Gd3+ or removing external Ca2+, supporting a role for Ca2+ entry. In most cases, the second phase of elevated [Ca2+]i was sustained during histamine stimulation but transient during AII stimulation. Maintenance of the second phase was a property of the agonist rather than of the particular cell being stimulated. Thus, individual cells exposed sequentially to histamine and AII displayed distinct patterns of [Ca2+]i changes to each agonist, regardless of the order of addition. Histamine also stimulated twice as much [3H]catecholamine release as AII, and release was completely dependent on external Ca2+. Therefore, the ability of histamine and AII to sustain (or promote) Ca2+ entry appears to underlie their efficacy as secretagogues. These data provide evidence linking agonist-dependent patterns of [Ca2+]i changes in single cells with agonist-dependent functional responses.  相似文献   

18.
Oxygen-free radicals are thought to be a major cause of beta-cell dysfunction in diabetic animals induced by alloxan or streptozotocin. We evaluated the effect of H2O2 on cytosolic Ca2+ concentration ([Ca2+]i) and the activity of ATP-sensitive potassium (K+ATP) channels in isolated rat pancreatic beta-cells using microfluorometry and patch clamp techniques. Exposure to 0.1 mM H2O2 in the presence of 2.8 mM glucose increased [Ca2+]i from 114.3+/-15.4 nM to 531.1+/-71.9 nM (n=6) and also increased frequency of K+ATP channel openings. The intensity of NAD(P)H autofluorescence was conversely reduced, suggesting that H2O2 inhibited the cellular metabolism. These three types of cellular parameters were reversed to the control level on washout of H2O2, followed by a transient increase in [Ca2+]i, the transient inhibition of K+ATP channels associated with action currents and increase of the NAD(P)H intensity with an overshoot. In the absence of external Ca2+, 0.1 mM H2O2 increased [Ca2+]i from 88.8+/-7.2 nM to 134.6+/-8.3 nM. Magnitude of [Ca2+]i increase induced by 0.1 mM H2O2 was decreased after treatment of cells with 0.5 mM thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pump (45.8+/-4.9 nM vs 15.0+/-4.8 nM). Small increase in [Ca2+]i in response to an increase of external Ca2+ from zero to 2 mM was further facilitated by 0.1 mM H2O2 (330.5+/-122.7 nM). We concluded that H2O2 not only activates K+ATP channels in association with metabolic inhibition, but also increases partly the Ca2+ permeability of the thapsigargin-sensitive intracellular stores and of the plasma membrane in pancreatic beta-cells.  相似文献   

19.
Angiotensin II (AII) and K+ raise the cytosolic free Ca2+ concentration [( Ca2+]i) and stimulate aldosterone production in isolated bovine adrenal glomerulosa cells. The mechanisms leading to an elevation of [Ca2+]i were analysed with the fluorescent Ca2+ probe quin 2. (1) Whereas [Ca2+]i rose transiently and returned to basal values within 5 min in response to AII, the effect of K+ was sustained for at least 15 min. (2) AII released Ca2+ from intracellular stores, whereas the [Ca2+]i response to K+ depended solely on extracellular [Ca2+]. (3) When added after K+ stimulation, AII provoked a dramatic decrease in [Ca2+]i to below the resting value. The role of [Ca2+]i in stimulating steroidogenesis was determined by manipulating the concentration of this cation. (4) In a cell superfusion system, the aldosterone response to AII is biphasic. Suppressing the transient [Ca2+]i elevation triggered by AII resulted in the disappearance of the initial secretory peak, but the final production rate was similar to that of control cells. (5) Normal basal [Ca2+]i levels were, however, necessary to maintain continuous AII-induced steroidogenesis. (6) When added after AII, the antagonist analogue [Sar1,Ala8]AII suppressed steroidogenesis without affecting [Ca2+]i levels. (7) In contrast, continuously elevated [Ca2+]i values were required for the initiation and the maintenance of K+-stimulated aldosterone production. These results demonstrate important differences in the mechanisms through which AII and K+ activate the Ca2+ messenger system. Moreover, functional correlations have shown that K+, but not AII, depends solely on a sustained [Ca2+]i response for its steroidogenic effect. However, the AII-induced effect is also a Ca2+-requiring process: the initial [Ca2+]i transient accelerates the onset of steroidogenesis, which is subsequently extremely sensitive to [Ca2+]i decreases below normal basal levels.  相似文献   

20.
In renal epithelial A6 cells, aldosterone applied for 24 h increased the transepithelial Cl- secretion over 30-fold due to activation of the Na+/K+/2Cl- cotransporter and stimulated the transepithelial Na+ absorption, activity of epithelial Na+ channel (ENaC), and alpha-ENaC mRNA expression. The stimulatory action of aldosterone on the transepithelial Na+ absorption, ENaC activity, and alpha-ENaC mRNA expression was diminished by 24h-pretreatment with quercetin (an activator of Na+/K+/2Cl- cotransporter participating in Cl- entry into the cytosolic space) or 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB) (a blocker of Cl- channel participating in Cl- release from the cytosolic space), while 24h-pretreatment with bumetanide (a blocker of Na+/K+/2Cl- cotransporter) enhanced the stimulatory action of aldosterone on transepithelial Na+ absorption. On the other hand, under the basal (aldosterone-unstimulated) condition, quercetin, NPPB or bumetanide had no effect on transepithelial Na+ absorption, activity of ENaC or alpha-ENaC mRNA expression. These observations suggest that although aldosterone shows overall its stimulatory action on ENaC (transepithelial Na+ transport), aldosterone has an inhibitory action on ENaC (transepithelial Na+ transport) via activation of the Na+/K+/2Cl- cotransporter, and that modification of activity of Cl- transporter/channel participating in the transepithelial Cl- secretion influences the aldosterone-stimulated ENaC (transepithelial Na+ transport).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号