首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toc64 has been suggested to be part of the chloroplast import machinery in Pisum sativum. A role for Toc64 in protein transport has not been established, however. To address this, we generated knockout mutants in the moss Physcomitrella patens using the moss's ability to perform homologous recombination with nuclear DNA. Physcomitrella patens contains two genes that encode Toc64-like proteins. Both of those proteins appear to be localized in the chloroplast. The double-mutant plants were lacking Toc64 protein in the chloroplasts but showed no growth phenotype. In addition, these plants accumulated other plastid proteins at wild-type levels and showed no difference from wild type in in vitro protein import assays. These plants did have a slightly altered chloroplast shape in some tissues, however. The evidence therefore indicates that Toc64 proteins are not required for import of proteins in Physcomitrella, but may point to involvement in the determination of plastid shape.  相似文献   

2.
Eleven mutant lines exhibiting decreased numbers of chloroplasts per cell were isolated from 8 800 tagged mutant lines of Physcomitrella patens by microscopic observations. Chloronema subapical cells in wild-type plants had a mean of 48 chloroplasts, whereas chloroplast numbers in subapical cells in mutant lines 215 and 222 decreased to 75 % of that in the wild type. Seven mutant lines - 473, 122, 221, 129, 492, 207, and 138 - had about half as many chloroplasts as the wild type. Mutant line 11 had a few remarkably enlarged chloroplasts, and mutant line 347 had chloroplasts of various sizes. Whereas the cell volume was the same as in the wild type in mutant lines 222, 473, 221, 129, 492, and 207, the cell volume of the other mutants increased. The chloroplast number of leaf cells was the same as that of chloronema cells in each mutant line when gametophores could be formed. Treatment with ampicillin decreased the number of chloroplasts in all mutant lines. Southern hybridization using DNA in tags as probes showed that only one insertion occurred in mutant lines 473 and 221. To determine whether the tagged DNA inserted into the known genes for plastid division, we isolated the PpMinD1, PpMinD2, and PpMinE1 genes. Genomic polymerase chain reaction analysis showed that the PpFtsZ and PpMinD/E genes were not disrupted by the insertion of the tags in mutant lines 11 and 347, respectively.  相似文献   

3.
4.
5.
RecA protein is widespread in bacteria, and it plays a crucial role in homologous recombination. We have identified two bacterial-type recA gene homologs (PprecA1, PprecA2) in the cDNA library of the moss Physcomitrella patens. N-terminal fusion of the putative organellar targeting sequence of PpRecA2 to the green fluorescent protein (GFP) caused a targeting of PpRecA2 to the chloroplasts. Mutational analysis showed that the first AUG codon acts as initiation codon. Fusion of the full-length PpRecA2 to GFP caused the formation of foci that were colocalized with chloroplast nucleoids. The amounts of PprecA2 mRNA and protein in the cells were increased by treatment with DNA damaging agents. PprecA2 partially complemented the recA mutation in Escherichia coli. These results suggest the involvement of PpRecA2 in the repair of chloroplast DNA.  相似文献   

6.
7.
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.  相似文献   

8.
叶绿体是植物细胞内一种重要的细胞器.它不仅是光合作用的场所,还是其它多种中间代谢的场所.叶绿体起源于蓝细菌,与其原核祖先类似,通过二分裂方式进行增殖.最近的研究表明,叶绿体的分裂装置包含原核起源和真核起源的蛋白质,它们在叶绿体的内膜内侧和外膜外侧协同作用以完成叶绿体的分裂.在过去十几年里,包括丝状温度敏感蛋白Z(FtsZ)、Min系统蛋白、质体分裂蛋白(PDV)和ARC蛋白等在内的多个叶绿体分裂相关组分被分离鉴定.本文简要介绍了叶绿体分裂装置各成员的发现、叶绿体被膜的收缩和叶绿体分裂位点的选择机制.另外,植物发育过程中叶绿体分裂可能受到细胞的控制,但目前对细胞如何调控叶绿体分裂知之甚少.本文对该领域的最新研究进展也进行了综述.  相似文献   

9.
Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. In contrast, the basal land plant Physcomitrella patens, a moss, encodes a third FtsZ family with one member. This protein is dually targeted to the plastids and to the cytosol. Here, we report on the targeted gene disruption of all ftsZ genes in R patens. Subsequent analysis of single and double knockout mutants revealed a complex interaction of the different FtsZ isoforms not only in plastid division, but also in chloroplast shaping, cell patterning, plant development, and gravity sensing. These results support the concept of a plastoskeleton and its functional integration into the cytoskeleton, at least in the moss R patens.  相似文献   

10.
ANGUSTIFOLIA (AN) is a plant-specific subfamily of the CtBP/BARS/AN family, characterized by a plant-specific C-terminal domain of approximately 200 amino acids. Previously, we revealed that double knockout (DKO) lines of Physcomitrium (Physcomitrella) patens ANGUSTIFOLIA genes (PpAN1-1 and PpAN1-2) show defects in gametophore height and the lengths of the seta and foot region of sporophytes, by reduced cell elongation. In addition to two canonical ANs, the genome of P. patens has two atypical ANs without a coding region for a plant-specific C-terminus (PpAN2-1 and PpAN2-2); these were investigated in this study. Similar to PpAN1s, both promoters of the PpAN2 genes were highly active in the stems of haploid gametophores and in the middle-to-basal region of young diploid sporophytes that develop into the seta and foot. Analyses of PpAN2-1/2-2 DKO and PpAN quadruple knockout (QKO) lines implied that these four AN genes have partially redundant functions to regulate cell elongation in their expression regions. Transgenic strains harboring P. patens α-tubulin fused to green fluorescent protein, which were generated from a QKO line, showed that the orientation of the microtubules in the gametophore tips in the PpAN QKO lines was unchanged from the wild-type and PpAN1-1/1-2 DKO plants. In addition to both PpAN2-1 and PpAN2-2, short Arabidopsis AN without the C-terminus of 200 amino acids could rescue the Arabidopsis thaliana an-1 phenotypes, implying AN activity is dependent on the N-terminal regions.  相似文献   

11.
The moss Physcomitrella patens , a model system for basal land plants, tolerates several abiotic stresses, including dehydration. We previously reported that Physcomitrella patens survives equilibrium dehydration to ?13 MPa in a closed system at 91% RH. Tolerance of desiccation to water potentials below ?100 MPa was only achieved by pretreatment with exogenous abscisic acid (ABA). We report here that gametophores, but not protonemata, can survive desiccation below ?100 MPa after a gradual drying regime in an open system, without exogenous ABA. In contrast, faster equilibrium drying at 90% RH for 3–5 days did not induce desiccation tolerance in either tissue. Endogenous ABA accumulated in protonemata and gametophores under both drying regimes, so did not correlate directly with desiccation tolerance. Gametophores of a Ppabi3a/b/c triple knock out transgenic line also survived the gradual dehydration regime, despite impaired ABA signaling. Our results suggest that the initial drying rate, and not the amount of endogenous ABA, may be critical in the acquisition of desiccation tolerance. Results from this work will provide insight into ongoing studies to uncover the role of ABA in the dehydration response and the underlying mechanisms of desiccation tolerance in this bryophyte.  相似文献   

12.
This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi‐gene families, probably reflecting the diverse roles of individual XTHs in various cell types. As there are fewer cell types in P. patens than in angiosperms such as Arabidopsis and rice, it is tempting to deduce that there are fewer XTH family genes in bryophytes. However, the present study unexpectedly identified as many as 32 genes that potentially encode XTH family proteins in the genome of P. patens, constituting a fairly large multi‐gene family that is comparable in size with those of Arabidopsis and rice. In situ localization of xyloglucan endotransglucosylase activity in this moss indicates that some P. patens XTH proteins exhibit biochemical functions similar to those found in angiosperms, and that their expression profiles are tissue‐dependent. However, comparison of structural features of families of XTH genes between P. patens and angiosperms demonstrated the existence of several bryophyte‐specific XTH genes with distinct structural and functional features that are not found in angiosperms. These bryophyte‐specific XTH genes might have evolved to meet morphological and functional needs specific to the bryophyte. These findings raise interesting questions about the biological implications of the XTH family of proteins in non‐seed plants.  相似文献   

13.
14.
Caspase-3参与调控蟾酥诱导人肺腺癌(ASTC-a-1)细胞的凋亡   总被引:1,自引:0,他引:1  
采用基因质粒转染技术、荧光发射谱检测分析以及荧光共振能量转移(FRET)受体光漂白技术,首次在活细胞中实时检测中药蟾酥(Chan-Su,CS或bufonis venenum)诱导人肺腺癌(ASTC-a-1)细胞凋亡过程中caspase-3的活化特性.采用CCK-8(Cell Couneing Kit-8)技术检测发现,蟾酥对细胞的活性具有显著的抑制作用;蟾酥处理稳定表达FRET质粒SCAT3的人肺腺癌细胞后,在不同的时间检测活细胞中SCAT3的荧光光谱;利用共聚焦扫描荧光显微成像技术检测蟾酥处理后细胞的形态,从而进一步证实蟾酥诱导细胞凋亡.实验结果表明:a.蟾酥可以有效抑制人肺腺癌(ASTC-a-1)细胞的增殖活性并诱导细胞的死亡.蟾酥对细胞的抑制作用具有剂量依赖性;b.蟾酥处理细胞6 h后能检测到明显的细胞凋亡小体,连续作用24 h后细胞全部皱褶,并有部分细胞破碎;c.蟾酥作用细胞2 h就能明显切割细胞内的SCAT3,细胞内SCAT3的切割程度随着蟾酥作用时间的延长而增加,24 h内细胞内的SCAT3完全被切割.受体光漂白实验也证实了该结论,表明caspase-3参与调控了蟾酥诱导的细胞凋亡过程.  相似文献   

15.
真核生物染色质的基本结构组成单元是核小体,基因组DNA被压缩在染色质中,核小体的存在通常会抑制转录、复制、修复和重组等发生在DNA模板上的生物学过程。组蛋白变体H2A.Z可以调控染色质结构进而影响基因的转录过程,但其详细的调控机制仍未研究清楚。为了比较含有组蛋白变体H2A.Z的核小体和常规核小体在盐离子作用下的稳定性差异,本文采用Förster共振能量转移的方法检测氯化钠、氯化钾、氯化锰、氯化钙、氯化镁等离子对核小体的解聚影响。实验对Widom 601 DNA序列进行双荧光Cy3和Cy5标记,通过荧光信号值的变化来反映核小体的解聚变化。Förster共振能量转移检测结果显示:在氯化钠、氯化钾、氯化锰、氯化钙和氯化镁作用下,含有组蛋白变体H2A.Z的核小体解聚速度相比于常规核小体要慢,且氯化钙、氯化锰和氯化镁的影响更明显。电泳分析结果表明,在75℃条件下含有组蛋白变体H2A.Z的核小体的解聚速率明显低于常规核小体。采用荧光热漂移检测(fluorescence thermal shift analysis , FTS)进一步分析含有组蛋白变体H2A.Z核小体的稳定性,发现两类核小体的荧光信号均呈现2个明显的增长期,含有组蛋白变体H2A.Z核小体的第1个荧光信号增速期所对应的温度明显高于常规核小体,表明核小体中H2A.Z/H2B二聚体的解聚变性温度要高于常规的H2A/H2B二聚体,含有组蛋白变体H2A.Z核小体的热稳定性高。研究结果均表明,含有组蛋白变体H2A.Z的核小体的结构比常规核小体的结构稳定。  相似文献   

16.
Gene I of cauliflower mosaic virus (CaMV) encodes a protein that is required for virus movement. The CaMV movement protein (MP) was used in a yeast 2-hybrid system to screen an Arabidopsis cDNA library for cDNAs encoding MP-interacting (MPI) proteins. Three different clones were found encoding proteins (MPI1, -2 and -7) that interact with the N-terminal third of the CaMV MP. The interaction in the 2-hybrid system between MPI7 and CaMV MP mutants correlated with the infectivity of the mutants. A non-infectious MP mutant, ER2A, with two amino acid changes in the N-terminal third of the MP failed to interact with MPI7, while an infectious second-site mutant, that differed from ER2A by only a single amino acid change, interacted in the 2-hybrid system. MPI7 is encoded by a member of a large, but diverse gene family in Arabidopsis. MPI7 is related in sequence, size and hydropathy profile to mammalian proteins (such as rat PRA1) described as a rab acceptor. The gene encoding MPI7 is expressed widely is Arabidopsis plants, and in transgenic plants the MPI7:GFP fusion protein is localized in the cytoplasm, concentrated in punctate spots. In protoplasts transfected with CFP:MP and MPI7:YFP, CFP:MP colocalized to some of the sites where MPI7:YFP is expressed. At these sites, fluorescence resonance energy transfer (FRET) between fluorophores was observed indicating an interaction in planta between the CaMV MP and MPI7.  相似文献   

17.
《MABS-AUSTIN》2013,5(4):759-769
Many monoclonal antibodies have been developed for therapy over the last 2 decades. In the development of therapeutic antibodies, the preclinical assessment of an antibody's biodistribution is important for the prediction of the antibody's efficacy and safety. For imaging analyses of such biodistributions, radioisotope (RI) labeling and fluorescence labeling methods are typically used, but the resulting data are limited because these methods cannot distinguish breakdown products from intact antibodies. To resolve this problem, we developed a novel method using fluorescent resonance energy transfer (FRET)-type labeling and a spectral unmixing tool. With FRET-type labeling (labeling with 2 species of fluorophore), different fluorescence properties of labeled intact antibodies and their breakdown products (the hydrolyzed/digested type of breakdown products) are made visible. With the spectral unmixing tool, the fluorescence of a solution containing the intact antibody and its breakdown products could be unmixed in proportion to their contents. Moreover, when labeled antibodies that targeted either human epidermal growth factor receptor-2 or epidermal growth factor receptor were injected into nude mice implanted subcutaneously with tumor cells, the accumulation of the injected labeled antibodies and their breakdown products in the tumor could be separately analyzed by both whole-mouse imaging and a tumor homogenate analysis. These results suggest that our method using FRET-type labeling and a spectral unmixing tool could be useful in distinguishing breakdown products from intact antibodies.  相似文献   

18.
Multicellular organisms regulate cell numbers and cell fate by using asymmetric cell division (ACD) and symmetric cell division (SCD) during their development and to adapt to unfavorable environmental conditions. A stem cell self-renews and generates differentiated cells. In plants, various types of cells are produced by ACD or SCD; however, the molecular mechanisms of ACD or SCD and the cell division mode switch are largely unknown. The moss Physcomitrium (Physcomitrella) patens is a suitable model to study plant stem cells due to its simple anatomy. Here, we report the cell division mode switch induced by abscisic acid (ABA) in P. patens. ABA is synthesized in response to abiotic stresses and induces round-shape cells, called brood cells, from cylindrical protonemal cells. Although two daughter cells with distinct sizes were produced by ACD in a protonemal stem cell on ABA-free media, the sizes of two daughter cells became similar with ABA treatment. Actin microfilaments were spatially localized on the apices of apical stem cells in protonemata on ABA-free media, but the polar accumulation was lost under the condition of ABA treatment. Moreover, ABA treatment conferred an identical cell fate to the daughter cells in terms of cell division activity. Collectively, the results indicate ABA may suppress the ACD characteristics but evoke SCD in cells. We also noticed that ABA-induced brood cells not only self-renewed but regenerated protonemal cells when ABA was removed from the media, suggesting that brood cells are novel stem cells that are induced by environmental signals in P. patens.  相似文献   

19.
KLF4是Kruppel样转录因子(kruppel-like factors, KLF)家族中的一员,是维持胚胎干细胞(embryonic stem cells, ESCs)全能性的重要转录因子。蛋白质转导结构域(protein transd uction domain, PTD)能够携带大分子进入细胞。为了获得具有穿膜功能的重组KLF4蛋白,利用原核表达载体PKYB表达KLF4与PTD的融合蛋白PTD-KLF4,用Ni柱纯化融合蛋白并作Western blotting鉴定。利用异硫氰酸荧光素(fluorescein isothiocyanate, FITC)标记PTD-KLF4检测其穿越中国仓鼠卵巢(chinese hamster ovary, CHO)细胞细胞膜的能力;用荧光共振能量转移(fluorescence resonance energy transfer, FRET)检测重组融合蛋白PTD-KLF4结合目的DNA的活性。结果表明:重组PTD-KLF4可以成功进入细胞、定位细胞核内,穿膜效率为(22.29±2.1)%。重组融合蛋白PTD-KLF4引起细胞形态变化,并具有与目标DNA序列特异结合的能力。重组PTD-KLF4的制备为外源蛋白诱导多能干细胞(induced pluripotent stem cells, IPSCs)奠定基础。  相似文献   

20.
The kink turn (K-turn) is a common motif in RNA structure, found in many RNA species important in translation, RNA modification and splicing, and the control of gene expression. In general the K-turn comprises a three nucleotide bulge followed by trans sugar-Hoogsteen G·A pairs. The RNA adopts a tightly kinked conformation, and is a common target for binding proteins, exemplified by the L7Ae family. We have measured the rates of association and dissociation for the binding of L7Ae to the Kt-7 kink turn, from which we calculate an affinity of KD = 10 pM. This high affinity is consistent with the role of this binding as the first stage in the assembly of key functional nucleoproteins such as box C/D snoRNP. Kink-turn RNA undergoes a two-state transition between the kinked conformation, and a more extended structure, and folding into the kinked form is induced by divalent metal ions, or by binding of proteins of the L7Ae class. The K-turn provides an excellent, simple model for RNA folding, which can be dissected at the atomic level. We have analyzed the contributions of the hydrogen bonds that form the G·A pairs to the ion- and protein-induced folding of the K-turn. We find that all four hydrogen bonds are important to the stability of the kinked form of the RNA, and we can now define all the important hydrogen bonding interactions that stabilize the K-turn. The high affinity of L7Ae binding is coupled to the induced folding of the K-turn, allowing some sub-optimal variants to adopt the kinked geometry. However, in all such cases the affinity is lowered, and the results underline the importance of both G·A pairs to the stability of the K-turn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号