首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhancing multiple disulfide bonded protein folding in a cell-free system   总被引:6,自引:0,他引:6  
A recombinant plasminogen activator (PA) protein with nine disulfide bonds was expressed in our cell-free protein synthesis system. Due to the unstable and reducing environment in the initial E. coli-based cell-free system, disulfide bonds could not be formed efficiently. By treating the cell extract with iodoacetamide and utilizing a mixture of oxidized and reduced glutathione, a stabilized redox potential was optimized. Addition of DsbC, replacing polyethylene glycol with spermidine and putrescine to create a more natural environment, adding Skp, an E. coli periplasmic chaperone, and expressing PA at 30 degrees C increased the solubility of the protein product as well as the yield of active PA. Taken together, the modifications enabled the production of more than 60 microg/mL of bioactive PA in a simple 3-h batch reaction.  相似文献   

2.
Summary A cell-free translation system producing mature green fluorescent protein (GFP) can be a useful tool for studying the mechanism and kinetics of GFP chromophore formation, as well as for fast protein engineering. We report here that the mature GFP can be formed in the cell-free translation system from E.coli. The synthesis of GFP in the cell-free system reaches a plateau in 30 to 40 min whereas its maturation is completed in 4 h from the beginning of translation. The delay between the GFP synthesis and the chromophore formation in the cell-free system provides the possibility to isolate and to analyse maturation intermediates for elucidation of the modification pathway.  相似文献   

3.
The model iron-sulfur (Fe-S) protein ferredoxin (Fd) from Synechocystis sp. PCC 6803 has been simultaneously produced and matured in a cell-free production system. After 6 h of incubation at 37 degrees C, Fd accumulated to >450 microg/mL. Essentially all was soluble, and 85% was active. Production and maturation of the protein in the cell-free system were found to be dependent in a coupled manner on the concentration of the supplemented iron and sulfur sources, ferrous ammonium sulfate and cysteine, respectively. The recombinant expression of ISC helper proteins during cell extract preparation did not increase cell-free Fd accumulation or activity, although the efficiency of iron and cysteine utilization increased. Fd maturation was independent of protein production rate, and proceeded at a constant rate throughout the period of active translation. In addition, incubation of denatured apo Fd with cell-free reaction components resulted in recovery of Fd activity, supporting the interpretation that maturation mechanisms did not act co-translationally. Incubation at 28 degrees C increased total and active protein accumulation, but decreased the ratio of active to total Fd produced. In summary, the high product yields and folding efficiency make the cell-free system described here an attractive platform for the study of Fe-S protein production and maturation. The system enables both small-volume, high throughput investigations as well as larger scale production. To our knowledge, this is the first demonstration of directed, high-yield production and maturation of an Fe-S protein in a cell-free system.  相似文献   

4.
Protein folding.   总被引:32,自引:0,他引:32       下载免费PDF全文
  相似文献   

5.
6.
7.
Cell-free synthesis, a method for the rapid expression of proteins, is increasingly used to study interactions of complex biological systems. GFP and its variants have become indispensable for fluorescence studies in live cells and are equally attractive as reporters for cell-free systems. This work investigates the use of fluorescence fluctuation spectroscopy (FFS) as a tool for quantitative analysis of protein interactions in cell-free expression systems. We also explore chromophore maturation of fluorescent proteins, which is of crucial importance for fluorescence studies. A droplet sample protocol was developed that ensured sufficient oxygenation for chromophore maturation and ease of manipulation for titration studies. The kinetics of chromophore maturation of EGFP, EYFP, and mCherry were analyzed as a function of temperature. A strong increase in the rate from room temperature to 37°C was observed. We further demonstrate that all EGFP proteins fully mature in the cell-free solution and that brightness is a robust parameter specifying stoichiometry. Finally, FFS is applied to study the stoichiometry of the nuclear transport factor 2 in a cell-free system over a broad concentration range. We conclude that combining cell-free expression and FFS provides a powerful technique for quick, quantitative study of chromophore maturation and protein-protein interaction.  相似文献   

8.
Protein folding in vitro.   总被引:6,自引:0,他引:6  
It is becoming increasingly evident that intermediates observed in protein folding in vitro may be closely related to conformational states that are important in various intracellular processes. This review focuses on recent advances in in vitro protein-folding studies with particular reference to the molten globule state, which is purported to be a common and distinct intermediate of protein folding.  相似文献   

9.
M Jacob  F X Schmid 《Biochemistry》1999,38(42):13773-13779
A protein chain must move relative to the solvent molecules and explore many conformations when it folds from the extended unfolded state to the compact native state. Experimental and theoretical approaches suggest that diffusional processes in fact contribute to the kinetics of protein folding. We describe here how variations of the solvent viscosity can be employed to uncover the diffusional contributions to a folding reaction and assess the use of transition state theory and Kramers' rate theory for the analysis of protein folding reactions.  相似文献   

10.
For high-throughput protein structural analysis, it is indispensable to develop a reliable protein overexpression system. Although many protein overexpression systems, such as that involving Escherichia coli cells, have been developed, the number of overexpressed proteins showing the same biological activities as those of the native proteins is limited. A novel wheat germ cell-free protein synthesis system was developed recently, and most of the proteins functioning in solution were synthesized as soluble forms. This suggests the applicability of this protein synthesis method to determination of the solution structures of functional proteins. To examine this possibility, we have synthesized two (15)N-labeled proteins and obtained (1)H-(15)N HSQC spectra for them. The structural analysis of these proteins has already progressed with an E. coli overexpression system, and (1)H-(15)N HSQC spectra for biologically active proteins have already been obtained. Comparing the spectra, we have shown that proteins synthesized with a wheat germ cell-free system have the proper protein folding and enough biological activity. This is the first experimental evidence of the applicability of the wheat germ cell-free protein synthesis system to high-throughput protein structural analysis.  相似文献   

11.
12.
13.
Standard building blocks of proteins--closed loops of 25-30 amino acid residues--have been recently discovered and further characterized by combined efforts of several laboratories. New challenging views on the protein structure, folding, and evolution are introduced by these studies. In particular, the role of van der Waals contacts in protein stability is better understood. They can be considered as locks closing the polypeptide chain returns and forming the loop-n-lock elements. The linearity of the arrangement of the standard loops in the proteins has important evolutionary implications. Selection pressure to maintain the loops of nearly standard size is reflected in the protein sequences as characteristic distance between hydrophobic residues, equal to the loop end-to-end distance. Further characterization of the loop-n-lock units reveals several sequence/structure prototypes, which suggests a new basis for protein classification. The following is a review of these studies.  相似文献   

14.
Protein folding and protein refolding.   总被引:7,自引:0,他引:7  
R Seckler  R Jaenicke 《FASEB journal》1992,6(8):2545-2552
The functional three-dimensional structure of proteins is determined solely by their amino acid sequences. Protein folding occurs spontaneously beginning with the formation of local secondary structure concomitant with a compaction of the molecule. Secondary structure elements subsequently interact to form subdomains and domains stabilized by tertiary interactions. Disulfide bond formation, and cis-trans isomerization of X-Pro peptide bonds, as the rate-limiting folding reactions, are enzymatically catalyzed during protein folding in the cell. Although folding of domains is fast enough to occur cotranslationally in vivo, such vectorial folding on the ribosome is not essential for attainment of the native structure of a protein. Slow steps on the pathway to the functional protein structure are docking reactions of domains, association of subunits, or reshuffling reactions at the oligomer level. Aggregation as a competing side reaction is prevented, and the kinetic partition between competing polypeptide folding and translocation reactions is regulated by chaperone proteins binding to incompletely folded polypeptides.  相似文献   

15.
16.
17.
Protein folding     
The importance of protein folding in the biosynthesis of proteins is reviewed.  相似文献   

18.
Protein folding     
The problem of protein folding is that how proteins acquire their native unique three‐dimensional structure in the physiological milieu. To solve the problem, the following key questions should be answered: do proteins fold co‐ or post‐translationally, i.e. during or after biosynthesis, what is the mechanism of protein folding, and what is the explanation for fast folding of proteins? The two first questions are discussed in the current review. The general lines are to show that the opinion, that proteins fold after they are synthesized is hardly substantiated and suitable for solving the problem of protein folding and why proteins should fold cotranslationally. A possible tentative model for the mechanism of protein folding is also suggested. To this end, a thorough analysis is made of the biosynthesis, delivery to the folding compartments, and the rates of the biosynthesis, translocation and folding of proteins. A cursory attention is assigned to the role of GroEL/ES‐like chaperonins in protein folding.  相似文献   

19.
20.
Protein folding in the bacterial periplasm.   总被引:30,自引:8,他引:22       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号