首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The human immunodeficiency virus type 1 (HIV-1) particles consists of two molecules of genomic RNA as well as molecules originating from gag, pol, and env products, all synthesized as precursor proteins. The 96-amino-acid Vpr protein, the only virion-associated HIV-1 regulatory protein, is not part of the virus polyprotein precursors, and its incorporation into virus particles must occur by way of an interaction with a component normally found in virions. To investigate the mechanism of incorporation of Vpr into the HIV-1 virion, Vpr- proviral DNA constructs harboring mutations or deletions in specific virion-associated gene products were cotransfected with Vpr expressor plasmids in COS cells. Virus released from the transfected cells was tested for the presence of Vpr by immunoprecipitation with Vpr-specific antibodies. The results of these experiments show that Vpr is trans-incorporated into virions but at a lower efficiency than when Vpr is expressed from a proviral construct. The minimal viral genetic information necessary for Vpr incorporation was a deleted provirus encoding only the pr55gag polyprotein precursor. Incorporation of Vpr requires the expression but not the processing of gag products and is independent of pol and env expression. Direct interaction of Vpr with the Pr55gag precursor protein was demonstrated by coprecipitation experiments with gag product-specific antibodies. Overall, these results indicate that HIV-1 Vpr is incorporated into the nascent virion through an interaction with the Gag precursor polyprotein and demonstrate a novel mechanism by which viral protein can be incorporated into virus particles.  相似文献   

2.
3.
4.
5.
Polymerase chain reaction (PCR) has been used to amplify the large fragments from viral genomic DNA of SIV from wild caught, asymptomatic Erythrocebus monkeys from Western Africa (Senegal) and also from HIV-2 infected cell lines. By using consensus primer sequences from highly conserved stretches of gag, pol and env genes, two halves of the viral genome of HIV-2 and SIV (isolated from west African Erythrocebus monkeys) have amplified by PCR. One half spans 5200 bp from within the U3 region of the 5' long terminal repeat (LTR) into pol gene and an overlapping fragment spans 3700 bp from the pol gene into U5 region of 3' LTR. Also fragments ranging from 1-2.3 kb from gag pol and env genes have been successfully amplified. Our data demonstrate that primers used to amplify large segments from viral DNA yield better results if they are derived from a consensus sequence of a highly conserved stretch of the viral genome.  相似文献   

6.
7.
8.
9.
In some type C retroviruses, translation of the pol gene appears to require translational suppression of the proximal gag amber codon. To identify the region of the viral nucleic acid responsible for synthesis of the pol gene products, a 300-base-pair DNA fragment containing the stop codon from a type C murine virus (AK virus) was inserted into the Escherichia coli lacZ gene such that the translational reading frame was maintained. Introduction of the resulting fusion gene into cells resulted in the suppression of the viral stop codon. As measured by beta-galactosidase production, suppression occurred at a frequency of approximately 10%. Suppression could occur in at least several vertebrate cell types and was not augmented by virus replication or the expression of viral gene products. This indicates that gag amber codon suppression does not require augmented levels of suppressor tRNA species.  相似文献   

10.
11.
12.
13.
14.
目的:对目前最为常用的三质粒慢病毒包装系统进行优化,以期明确各质粒表达的病毒成分对提高慢病毒包装效率的重要性。方法:在限定总质粒量为10μg的情况下,将表达绿色荧光蛋白(GFP)的目的质粒、表达gag/pol、Rev、VSVG的包装质粒按不同比例混合,转染293T细胞进行病毒包装,48 h后收集上清用于感染293T及K562细胞,72 h后经流式细胞术检测GFP+阳性细胞比例,分析所获病毒的感染效率。结果:采用不同的质粒混合比例包装的病毒感染效率具有明显差异,其中携带GFP的目的质粒量影响作用最为显著,当目的质粒量从15%(1.5μg)增至35%(3.5μg)时,GFP+293T细胞比例从14.2%升至45.1%,增加了3.2倍。当固定目的质粒量为35%,同时分别将表达gag/pol或Rev的质粒量从15%提高到25%时,改变Rev组的GFP+阳性率提升最明显,为1.5倍;而改变VSVG质粒量在已测试的混合比例中作用不显著。包装病毒感染K562细胞的结果与293T细胞类似。结论:通过对比包装病毒的感染效率,优化了慢病毒包装的混合质粒条件,并成功地应用于感染白血病细胞系;首次发现提高Rev质粒量可以更有效地提高病毒的包装效率,为利用慢病毒表达体系研究多种基因在血液系统中的功能奠定了技术基础。  相似文献   

15.
Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA(3)(Lys) serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA(3)(Lys) placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains, the multifunctional HIV-1 Gag polyprotein orchestrates the highly coordinated process of virion assembly, but the contribution of these domains to tRNA(3)(Lys) annealing is unclear. Here, we show that NC is absolutely essential for annealing and that the MA domain inhibits Gag's tRNA annealing capability. During assembly, MA specifically interacts with inositol phosphate (IP)-containing lipids in the plasma membrane (PM). Surprisingly, we find that IPs stimulate Gag-facilitated tRNA annealing but do not stimulate annealing in Gag variants lacking the MA domain or containing point mutations involved in PM binding. Moreover, we find that IPs prevent MA from binding to nucleic acids but have little effect on NC or Gag. We propose that Gag binds to RNA either with both NC and MA domains or with NC alone and that MA-IP interactions alter Gag's binding mode. We propose that MA's interactions with the PM trigger the switch between these two binding modes and stimulate Gag's chaperone function, which may be important for the regulation of events such as tRNA primer annealing.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号