首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We previously described use of the human parvovirus, adeno-associated virus (AAV), as a vector for transient expression in mammalian cells of the gene for chloramphenicol acetyltransferase (CAT). In the AAV vector, pTS1, the CAT gene is expressed under the control of the major AAV promoter p40. This promoter is embedded within the carboxyl-terminal region of an open reading frame (orf-1) which codes for a protein (rep) required for AAV DNA replication. We show here that the rep product has additional trans-acting properties to regulate gene expression. First, deletion or frame-shift mutations in orf-1, which occurred far upstream of p40, increased expression of CAT in human 293 (adenovirus-transformed) cells. This increased CAT expression was abolished when such mutant AAV vectors were transfected into 293 cells together with a second AAV vector which could supply the wild-type AAV rep product in trans. Thus, an AAV rep gene product was a negative regulator, in trans, of expression of CAT in uninfected 293 cells. In adenovirus-infected 293 cells, the function of the AAV rep product was more complex, but in some cases, it appeared to be a trans activator of the expression from p40. In HeLa cells, only trans activation by rep was seen in the absence or presence of adenovirus. Neither activation nor repression by the rep product required replication per se of the AAV vector DNA. Thus, trans-acting negative or positive regulation of gene expression by the AAV rep gene is modulated by factors in the host cell and by the helper adenovirus.  相似文献   

3.
A hybrid adeno-associated virus (AAV)/simian virus 40 (SV40) genome is described. In this construct SV40 regulatory sequences, including the early promoter/enhancers and origin of DNA replication, were substituted for the AAV p5 promoter, which normally controls expression of the AAV rep gene. The hybrid genome was phenotypically indistinguishable from wild-type AAV in human cells in the presence or absence of helper virus. Upon transfection into cos-7 cells, which constitutively produced the SV40 tumor antigen, the genome replicated as a plasmid when the SV40 origin was used, although with a low efficiency compared with that of a non-AAV/SV40 replicon. The low level of replication was due to an inhibitory effect of an AAV rep gene product and was specific for replicons containing AAV sequences. Target AAV sequences required for inhibition by rep appeared to reside in the terminal repetitions since deletion of these sequences allowed efficient replication in the presence of the rep gene. The possible role for negative autoregulation of AAV DNA replication in latent infection and helper-dependent replication by AAV is discussed.  相似文献   

4.
J Li  R J Samulski    X Xiao 《Journal of virology》1997,71(7):5236-5243
Recent success achieving long-term in vivo gene transfer without a significant immune response by using adeno-associated virus (AAV) vectors (X. Xiao, J. Li, and R. J. Samulski, J. Virol. 70:8098-8108, 1996) has encouraged further development of this vector for human gene therapy. Currently, studies focus on the generation of high-titer vectors by using the two-plasmid helper-vector system in adenovirus (Ad)-infected cells. To examine the effects of the AAV replication (rep) genes on recombinant AAV (rAAV) vector production, we have constructed a series of AAV helper plasmids that contain strong heterologous promoters in place of the endogenous p5 promoter. Although high-level rep gene expression was achieved, rAAV DNA failed to replicate in the absence of Ad infection. Moreover, unregulated overexpression of Rep78/68 led to substantially lower rAAV yields in the presence of Ad (10(4-5) versus 10(7-8)). In contrast, under similar conditions, reduced Rep78/68 expression resulted in much higher rAAV yields (10(9)). Molecular characterization showed that overexpression of the rep gene decreased rAAV DNA replication and severely inhibited capsid (cap) gene expression. Interestingly, a reduced rep level enhanced cap gene expression and supported normal rAAV DNA replication. These studies suggest a critical role for regulated rep gene expression in rAAV production and have facilitated the development of a new AAV helper plasmid that increases vector production eightfold over currently used constructs.  相似文献   

5.
6.
7.
8.
There is a limited understanding of the cellular regulation of HBV gene expression in differentiated hepatocytes. We previously demonstrated that HBV replication inversely correlates with cell proliferation and DNA synthesis. In this report, temperature-induced modulation of cell growth was used as a novel approach to study HBV gene expression in the absence of indirect effects from drugs or serum deprivation. We observed markedly elevated levels of hepatic HBV mRNA expression from integrated and episomal HBV DNA at 32 degrees C. Additionally, hepatoblastoma cells cultured at 32 degrees C expressed increased levels of albumin mRNA and decreased levels of c-myc mRNA, which demonstrates that liver-derived cells cultured at low temperature exhibit characteristics of functional and differentiated hepatocytes. In transiently transfected HepG2 cells cultured at 32 degrees C, the HBV enhancer 1 activated the X promoter and core/pregenomic promoter by 7.3- and 28-fold, respectively. In the absence of enhancer 1, core/pregenomic promoter activity was 2.4-fold higher than the X promoter in HepG2 cells at 32 degrees C. In contrast, enhancer 1 exclusively activated the X promoter in transfected non-liver cells at 32 degrees C. Therefore, the core/pregenomic promoter exhibits strict liver-specificity at low temperature. This work supports the hypothesis that HBV replication and gene expression are optimal in non-activated hepatocytes, and provides a novel system for delineating molecular aspects of the HBV replication process.  相似文献   

9.
Although adeno-associated virus (AAV) vectors are potentially useful gene transfer vehicles for gene therapy, the vector production system is currently at the developmental stage. We constructed AAV helper plasmids (Rep and Cap expression plasmids) by replacing a native AAV promoter, p5, with various heterologous promoters to examine whether the efficiency of AAV vector production was influenced by modulating the AAV protein expression pattern. The helper plasmids containing heterologous promoters (EF, CMV, SV40, B19p6, and CAG promoters, respectively) expressed Rep78/68 more efficiently than a conventional helper plasmid (pIM45), but the expression of Rep52/40 and Cap decreased, resulting in a significant reduction in AAV vector production. Furthermore, the efficiency of vector production never fully recovered even if the Cap proteins were supplied by an additional expression plasmid. A large amount of Rep78/68 and/or a reduced level of Rep52/40 may have deleterious effects on AAV vector production. The present findings will aid in the development of a more efficient AAV vector production system.  相似文献   

10.
Recombinant adeno-associated virus (AAV) type 2 has attracted attention because it appears to have the potential to serve as a vector for human gene therapy. An interesting feature of wild-type AAV is its site-specific integration into AAVS1, a defined locus on chromosome 19. This reaction requires the presence of two viral elements: inverted terminal repeats and Rep78/68. Accordingly, current AAV vectors lacking the rep gene lack the capacity for site-specific integration. In this report, we describe the use of Cre-loxP recombination in a novel system for the regulated, transient expression of Rep78, which is potentially cytotoxic when synthesized constitutively. We constructed a plasmid in which the p5 promoter was situated downstream of the rep coding sequence; in this configuration, rep expression is silent. However, Cre circularizes the rep expression unit, directly joining the p5 promoter to the 5' end of the rep78 coding sequence, resulting in expression of Rep78. Such structural and functional changes were confirmed by detailed molecular analysis. A key feature of this system is that Rep expression was terminated when the circular molecule was linearized and integrated into the chromosome. Using this regulated expression system, we attempted site-specific integration of AAV vector plasmids. A PCR-based assay and analysis of fluorescence in situ hybridization showed that the AAV vector sequence was integrated into chromosome 19. Sequence analysis also confirmed that transient expression of Rep78 was sufficient for site-specific integration at the AAVS1 locus, as is observed with integration of wild-type AAV.  相似文献   

11.
The adeno-associated virus (AAV) rep gene codes for a family of nonstructural proteins which are required for AAV gene regulation and DNA replication. In addition, rep has been implicated in a variety of activities outside the AAV life cycle which have been difficult to study, since attempts to achieve separate and constitutive expression of rep in stable cell lines have failed so far. Here we report the generation of two cell lines which inducibly express Rep78 under the control of the glucocorticoid-responsive mouse mammary tumor virus promoter. In addition, one of the cell lines constitutively expresses relatively high levels of Rep52. Both cell lines showed similar plating efficiencies with and without induction of Rep78 expression, which rules out cytotoxic effects of Rep78. The cell lines efficiently support DNA replication of a rep-negative AAV genome and initiate the formation of AAV particles. However, despite the correct sizes and stoichiometry of the three capsid proteins, the AAV particles were noninfectious. This was found to be due to a defect in the accumulation of single-stranded AAV DNA. Transient transfection of single expression constructs for constitutive, high-level expression of individual Rep proteins (either Rep78, Rep68, Rep52, or Rep40) complemented this defect. Infectious rep-negative AAV progeny was produced at varying efficiencies depending on the rep expression construct used. These data show that functional expression of full-length Rep in recombinant cell lines is possible and that the state of Rep expression is critical for the infectivity of AAV progeny produced.  相似文献   

12.
13.
14.
15.
When a plasmid containing the wild-type polyomavirus intergenic regulatory region fused to the bacterial cat gene was introduced into mouse NIH 3T3 cells along with a plasmid coding for the early viral proteins (T antigens), chloramphenicol transacetylase enzyme activity and mRNA levels were increased about 10-fold over levels observed in the absence of early proteins. To investigate this transactivation phenomenon further, 11 specific deletion mutant derivatives of the wild-type parent plasmid were constructed and studied. One mutant (NAL) with a minimal level of chloramphenicol transacetylase expression in the absence of T antigens was capable of being transactivated more than 40-fold. A number of other mutants, however, had little capacity for transactivation. Each of these mutants had in common a defect in large T-antigen-mediated DNA replication. Interestingly, one of the transactivation-defective mutants showed a basal late promoter activity fivefold higher than that of wild type and replicated in mouse cells in the absence of large T antigen. Subsequently, a small deletion abolishing viral DNA replication was introduced into those mutants capable of transactivation. The effect of the second deletion was to eliminate both replication and transactivation. Finally, wild-type and mutant constructs were transfected into Fisher rat F-111 cells in the presence or absence of early proteins. No transactivation or replication was ever observed in these cells. We concluded from these studies that the observed transactivation of the polyomavirus late promoter by one or more of the viral early proteins was due to either higher template concentration resulting from DNA replication or replication-associated changes in template conformation.  相似文献   

16.
Adeno-associated virus type 2 (AAV-2) gene expression is tightly controlled by functions of the helper virus as well as by the products of its own viral rep gene. Double-immunofluorescence studies of Rep and VP protein expression in cells coinfected with AAV-2 and adenovirus type 2 showed that a large proportion of these cells expressed Rep78 and Rep52 but no capsid proteins. The percentage of Rep78/Rep52- and capsid protein-positive cells was strongly influenced by the relative ratio of AAV-2 to adenovirus type 2. In contrast, nearly all cells positive for Rep68/Rep40 were also positive for capsid protein expression. Examination of p40 promoter transactivation by individual Rep proteins in the presence of adenovirus, however, showed that both Rep78 and Rep68 efficiently stimulated p40 mRNA accumulation and capsid protein expression. This strong transactivation was reliant upon the presence of terminal repeats and correlated with template amplification. In replication-deficient expression constructs, transactivation was observed only with Rep68 and was dependent on the linear Rep binding site within the left terminal repeat which was detected in the presence of high adenovirus concentrations. In the absence of any terminal repeat sequences, Rep68 expression again led to a minor transactivation of capsid protein expression which was detectable only at low adenovirus concentrations. This low level of transactivation of capsid protein expression by Rep proteins in the absence of terminal repeats resulted in a lower efficiency of capsid assembly. The data show a dominant influence of adenovirus type 2 functions on AAV-2 gene expression, a requirement for terminal repeats for strong transactivation of the p40 promoter by Rep proteins, and differential influences of Rep78 and Rep68 on AAV-2 promoters. Implications for the production of recombinant AAV-2 vectors are discussed.  相似文献   

17.
We have observed that of the 10 AAV serotypes, AAV6 is the most efficient in transducing primary human hematopoietic stem cells (HSCs), and that the transduction efficiency can be further increased by specifically mutating single surface-exposed tyrosine (Y) residues on AAV6 capsids. In the present studies, we combined the two mutations to generate a tyrosine double-mutant (Y705+731F) AAV6 vector, with which >70% of CD34+ cells could be transduced. With the long-term objective of developing recombinant AAV vectors for the potential gene therapy of human hemoglobinopathies, we generated the wild-type (WT) and tyrosine-mutant AAV6 vectors containing the following erythroid cell-specific promoters: β-globin promoter (βp) with the upstream hyper-sensitive site 2 (HS2) enhancer from the β-globin locus control region (HS2-βbp), and the human parvovirus B19 promoter at map unit 6 (B19p6). Transgene expression from the B19p6 was significantly higher than that from the HS2-βp, and increased up to 30-fold and up to 20-fold, respectively, following erythropoietin (Epo)-induced differentiation of CD34+ cells in vitro. Transgene expression from the B19p6 or the HS2-βp was also evaluated in an immuno-deficient xenograft mouse model in vivo. Whereas low levels of expression were detected from the B19p6 in the WT AAV6 capsid, and that from the HS2-βp in the Y705+731F AAV6 capsid, transgene expression from the B19p6 promoter in the Y705+731F AAV6 capsid was significantly higher than that from the HS2-βp, and was detectable up to 12 weeks post-transplantation in primary recipients, and up to 6 additional weeks in secondary transplanted animals. These data demonstrate the feasibility of the use of the novel Y705+731F AAV6-B19p6 vectors for high-efficiency transduction of HSCs as well as expression of the b-globin gene in erythroid progenitor cells for the potential gene therapy of human hemoglobinopathies such as β-thalassemia and sickle cell disease.  相似文献   

18.
The Rep proteins encoded by the adeno-associated virus type 2 (AAV) play a crucial role in the rescue, replication, and integration of the viral genome. In the absence of a helper virus, little expression of the AAV Rep proteins occurs, and the AAV genome fails to undergo DNA replication. Since previous studies have established that expression of the Rep78 and Rep68 proteins from the viral p5 promoter is controlled by the Rep-binding site (RBS) and the YY1 factor-binding site (YBS), we constructed a number of recombinant AAV plasmids containing mutations and/or deletions of the RBS and the YBS in the p5 promoter. These plasmids were transfected in HeLa or 293 cells and analyzed for the potential to undergo AAV DNA rescue and replication. Our studies revealed that (i) a low-level rescue and autonomous replication of the wild-type AAV genome occurred in 293 but not in HeLa cells; (ii) mutations in the RBS resulted in augmented expression from the p5 promoter, leading to more efficient rescue and/or replication of the AAV genome in 293 but not in HeLa cells; (iii) little rescue and/or replication occurred from plasmids containing mutations in the YBS alone in the absence of coinfection with adenovirus; (iv) expression of the adenovirus E1A gene products was insufficient to mediate rescue and/or replication of the AAV genome in HeLa cells; (v) autonomously replicated AAV genomes in 293 cells were successfully encapsidated in mature progeny virions that were biologically active in secondary infection of HeLa cells in the presence of adenovirus; and (vi) stable transfection of recombinant AAV plasmids containing a gene for resistance to neomycin significantly affected stable integration only in 293 cells, presumably because rescue and autonomous replication of the AAV genome from these plasmids occurred in 293 cells but not in HeLa or KB cells. These data suggest that in the absence of adenovirus, the AAV Rep protein-RBS interaction plays a dominant role in down-regulating viral gene expression from the p5 promoter and that perturbation in this interaction is sufficient to confer autonomous replication competence to AAV in 293 cells.  相似文献   

19.
20.
The initial aim of this study was to combine attributes of adeno-associated virus (AAV) and adenovirus (Ad) gene therapy vectors to generate an Ad-AAV hybrid vector allowing efficient site-specific integration with Ad vectors. In executing our experimental strategy, we found that, in addition to the known incompatibility of Rep expression and Ad growth, an equally large obstacle was presented by the inefficiency of the integration event when using traditional recombinant AAV (rAAV) vectors. This study has addressed both of these problems. We have shown that a first-generation Ad can be generated that expresses Rep proteins at levels consistent with those found in wild-type AAV (wtAAV) infections and that Rep-mediated AAV persistence can occur in the presence of first-generation Ad vectors. Our finding that traditional rAAV plasmid vectors lack integration potency compared to wtAAV plasmid constructs (10- to 100-fold differences) was unexpected but led to the discovery of a previously unidentified AAV integration enhancer sequence element which functions in cis to an AAV inverted terminal repeat-flanked target gene. rAAV constructs containing left-end AAV sequence, including the p5-rep promoter sequence, integrate efficiently in a site-specific manner. The identification of this novel AAV integration enhancer element is consistent with previous studies, which have indicated that a high frequency of wtAAV recombinant junction formation occurs in the vicinity of the p5 promoter, and recent studies have demonstrated a role for this region in AAV DNA replication. Understanding the contribution of this element to the mechanism of AAV integration will be critical to the use of AAV vectors for targeted gene transfer applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号