首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.  相似文献   

2.
The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (Kd ~20 nM) via the common interacting interface (residues 312–349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CΔ78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CΔ78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome.  相似文献   

3.
The Apn2 protein of Saccharomyces cerevisiae contains 3'-->5' exonuclease and 3'-phosphodiesterase activities, and these activities function in the repair of DNA strand breaks that have 3'-damaged termini and which are formed in DNA by the action of oxygen-free radicals. Apn2 also has an AP endonuclease activity and functions in the removal of abasic sites from DNA. Here, we provide evidence for the physical and functional interaction of Apn2 with proliferating cell nuclear antigen (PCNA). As indicated by gel filtration and two-hybrid studies, Apn2 interacts with PCNA both in vitro and in vivo and mutations in the consensus PCNA-binding motif of Apn2 abolish this interaction. Importantly, PCNA stimulates the 3'-->5' exonuclease and 3'-phosphodiesterase activities of Apn2. We have examined the involvement of the interdomain connector loop (IDCL) and of the carboxy-terminal domain of PCNA in Apn2 binding and found that Apn2 binds PCNA via distinct domains dependent upon whether the binding is in the absence or presence of DNA. In the absence of DNA, Apn2 binds PCNA through its IDCL domain, whereas in the presence of DNA, when PCNA has been loaded onto the template-primer junction by replication factor C, the C-terminal domain of PCNA mediates the binding.  相似文献   

4.
There is compelling evidence that proliferating cell nuclear antigen (PCNA), a DNA sliding clamp, co-ordinates the processing and joining of Okazaki fragments during eukaryotic DNA replication. However, a detailed mechanistic understanding of functional PCNA:ligase I interactions has been incomplete. Here we present the co-crystal structure of yeast PCNA with a peptide encompassing the conserved PCNA interaction motif of Cdc9, yeast DNA ligase I. The Cdc9 peptide contacts both the inter-domain connector loop (IDCL) and residues near the C-terminus of PCNA. Complementary mutational and biochemical results demonstrate that these two interaction interfaces are required for complex formation both in the absence of DNA and when PCNA is topologically linked to DNA. Similar to the functionally homologous human proteins, yeast RFC interacts with and inhibits Cdc9 DNA ligase whereas the addition of PCNA alleviates inhibition by RFC. Here we show that the ability of PCNA to overcome RFC-mediated inhibition of Cdc9 is dependent upon both the IDCL and the C-terminal interaction interfaces of PCNA. Together these results demonstrate the functional significance of the β-zipper structure formed between the C-terminal domain of PCNA and Cdc9 and reveal differences in the interactions of FEN-1 and Cdc9 with the two PCNA interfaces that may contribute to the co-ordinated, sequential action of these enzymes.  相似文献   

5.
Flap endonuclease-1 (FEN1) is a key enzyme for maintaining genomic stability and replication. Proliferating cell nuclear antigen (PCNA) binds FEN1 and stimulates its endonuclease activity. The structural basis of the FEN1-PCNA interaction was revealed by the crystal structure of the complex between human FEN1 and PCNA. The main interface involves the C-terminal tail of FEN1, which forms two beta-strands connected by a short helix, the betaA-alphaA-betaB motif, participating in beta-beta and hydrophobic interactions with PCNA. These interactions are similar to those previously observed for the p21CIP1/WAF1 peptide. However, this structure involving the full-length enzyme has revealed additional interfaces that are involved in the core domain. The interactions at the interfaces maintain the enzyme in an inactive 'locked-down' orientation and might be utilized in rapid DNA-tracking by preserving the central hole of PCNA for sliding along the DNA. A hinge region present between the core domain and the C-terminal tail of FEN1 would play a role in switching the FEN1 orientation from an inactive to an active orientation.  相似文献   

6.
Flap endonuclease 1 (Fen1) is a structure-specific metallonuclease with important functions in DNA replication and DNA repair. It interacts like many other proteins involved in DNA metabolic events with proliferating cell nuclear antigen (PCNA), and its enzymatic activity is stimulated by PCNA in vitro. The PCNA interaction site is located close to the C terminus of Fen1 and is flanked by a conserved basic region of 35-38 amino acids in eukaryotic species but not in archaea. We have constructed two deletion mutants of human Fen1 that lack either the PCNA interaction motif or a part of its adjacent C-terminal region and analyzed them in a variety of assays. Remarkably, deletion of the basic C-terminal region did not affect PCNA interaction but resulted in a protein with significantly reduced enzymatic activity. Electrophoretic mobility shift analysis revealed that this mutant displayed a severe defect in substrate binding. Our results suggest that the C terminus of eukaryotic Fen1 consists of two functionally distinct regions that together might form an important regulatory domain.  相似文献   

7.
DNA methylation patterns in genome are maintained during replication by a DNA methyltransferase Dnmt1. Mouse Dnmt1 is a 180 kDa protein comprising the N-terminal regulatory domain, which covers 2/3 of the molecule, and the rest C-terminal catalytic domain. In the present study, we demonstrated that the limited digestion of full-length Dnmt1 with different proteases produced a common N-terminal fragment, which migrated along with Dnmt1 (1-248) in SDS-polyacrylamide gel electrophoresis. Digestion of the N-terminal domains larger than Dnmt1 (1-248) with chymotrypsin again produced the fragment identical to the size of Dnmt1 (1-248). These results indicate that the N-terminal domain of 1-248 forms an independent domain. This N-terminal domain showed DNA binding activity, and the responsible sequence was narrowed to the 79 amino acid residues involving the proliferating cell nuclear antigen (PCNA) binding motif. The DNA binding activity did not distinguish between DNA methylated and non-methylated states, but preferred to bind to the minor groove of AT-rich sequence. The DNA binding activity of the N-terminal domain competed with the PCNA binding. We propose that DNA binding activity of the N-terminal domain contributes to the localization of Dnmt1 to AT-rich sequence such as Line 1, satellite, and the promoter of tissue-specific silent genes.  相似文献   

8.
Human flap endonuclease 1 (FEN1), an essential DNA replication protein, cleaves substrates with unannealed 5'-tails. FEN1 apparently tracks along the flap from the 5'-end to the cleavage site. Proliferating cell nuclear antigen (PCNA) stimulates FEN1 cleavage 5-50-fold. To determine whether tracking, binding, or cleavage is enhanced by PCNA, we tested a variety of flap substrates. Similar levels of PCNA stimulation occur on both a cleavage-sensitive nicked substrate and a less sensitive gapped substrate. PCNA stimulates FEN1 irrespective of the flap length. Stimulation occurs on a pseudo-Y substrate that exhibits upstream primer-independent cleavage. A pseudo-Y substrate with a sequence requiring an upstream primer for cleavage was not activated by PCNA, suggesting that PCNA does not compensate for substrate features that inhibit cleavage. A biotin.streptavidin conjugation at the 5'-end of a flap structure prevents FEN1 loading. The addition of PCNA does not restore FEN1 activity. These results indicate that PCNA does not direct FEN1 to the cleavage site from solution. Kinetic analyses reveal that PCNA can lower the K(m) for FEN1 by 11-12-fold. Overall, our results indicate that after FEN1 tracks to the cleavage site, PCNA enhances FEN1 binding stability, allowing for greater cleavage efficiency.  相似文献   

9.
We constructed nine deletion mutants of NAD+-dependent DNA ligase from Aquifex pyrophilus to characterize the functional domains. All of DNA ligase deletion mutants were analyzed in biochemical assays for NAD+-dependent self-adenylation, DNA binding, and nick-closing activity. Although the mutant lsub1 (91-362) included the active site lysine (KxDG), self-adenylation was not shown. However, the mutants lsub6 (1-362), lsub7 (1-516), and lsub9 (1-635) showed the same adenylation activity as that of wild type. The lsub5 (91-719), which has the C-terminal domain (487-719) as to lsub4 (91-486), showed minimal adenylation activity. These results suggest that the presence of N-terminal 90 residues is essential for the formation of an enzyme-AMP complex, while C-terminal domain (487-719) appears to play a minimal role in adenylation. It was found that the presence of C-terminal domain (487-719) is indispensable for DNA binding activity of lsub5 (91-719). The mutant lsub9 (1-635) showed reduced DNA binding activity compared to that of wild type, suggesting the contribution of the domain (636-719) for the DNA binding activity. Thus, we concluded that the N-terminal 90 residues and C-terminal domain (487-719) of NAD+-dependent DNA ligase from A. pyrophilus are mutually indispensable for binding of DNA substrate.  相似文献   

10.
Zheng L  Dai H  Hegde ML  Zhou M  Guo Z  Wu X  Wu J  Su L  Zhong X  Mitra S  Huang Q  Kernstine KH  Pfeifer GP  Shen B 《Cell research》2011,21(7):1052-1067
DNA replication and repair are critical processes for all living organisms to ensure faithful duplication and transmission of genetic information. Flap endonuclease 1 (Fen1), a structure-specific nuclease, plays an important role in multiple DNA metabolic pathways and maintenance of genome stability. Human FEN1 mutations that impair its exonuclease activity have been linked to cancer development. FEN1 interacts with multiple proteins, including proliferation cell nuclear antigen (PCNA), to form various functional complexes. Interactions with these proteins are considered to be the key molecular mechanisms mediating FEN1's key biological functions. The current challenge is to experimentally demonstrate the biological consequence of a specific interaction without compromising other functions of a desired protein. To address this issue, we established a mutant mouse model harboring a FEN1 point mutation (F343A/F344A, FFAA), which specifically abolishes the FEN1/PCNA interaction. We show that the FFAA mutation causes defects in RNA primer removal and long-patch base excision repair, even in the heterozygous state, resulting in numerous DNA breaks. These breaks activate the G2/M checkpoint protein, Chk1, and induce near-tetraploid aneuploidy, commonly observed in human cancer, consequently elevating the transformation frequency. Consistent with this, inhibition of aneuploidy formation by a Chk1 inhibitor significantly suppressed the cellular transformation. WT/FFAA FEN1 mutant mice develop aneuploidy-associated cancer at a high frequency. Thus, this study establishes an exemplary case for investigating the biological significance of protein-protein interactions by knock-in of a point mutation rather than knock-out of a whole gene.  相似文献   

11.
The archaeal/eukaryotic proliferating cell nuclear antigen (PCNA) toroidal clamp interacts with a host of DNA modifying enzymes, providing a stable anchorage and enhancing their respective processivities. Given the broad range of enzymes with which PCNA has been shown to interact, relatively little is known about the mode of assembly of functionally meaningful combinations of enzymes on the PCNA clamp. We have determined the X-ray crystal structure of the Sulfolobus solfataricus PCNA1–PCNA2 heterodimer, bound to a single copy of the flap endonuclease FEN1 at 2.9 Å resolution. We demonstrate the specificity of interaction of the PCNA subunits to form the PCNA1–PCNA2–PCNA3 heterotrimer, as well as providing a rationale for the specific interaction of the C-terminal PIP-box motif of FEN1 for the PCNA1 subunit. The structure explains the specificity of the individual archaeal PCNA subunits for selected repair enzyme ‘clients’, and provides insights into the co-ordinated assembly of sequential enzymatic steps in PCNA-scaffolded DNA repair cascades.  相似文献   

12.
DNA polymerase eta (Polη) is a unique translesion DNA synthesis (TLS) enzyme required for the error-free bypass of ultraviolet ray (UV)-induced cyclobutane pyrimidine dimers in DNA. Therefore, its deficiency confers cellular sensitivity to UV radiation and an increased rate of UV-induced mutagenesis. Polη possesses a ubiquitin-binding zinc finger (ubz) domain and a PCNA-interacting-protein (pip) motif in the carboxy-terminal region. The role of the Polη pip motif in PCNA interaction required for DNA polymerase recruitment to the stalled replication fork has been demonstrated in earlier studies; however, the function of the ubz domain remains divisive. As per the current notion, the ubz domain of Polη binds to the ubiquitin moiety of the ubiquitinated PCNA, but such interaction is found to be nonessential for Polη''s function. In this study, through amino acid sequence alignments, we identify three classes of Polη among different species based on the presence or absence of pip motif or ubz domain and using comprehensive mutational analyses, we show that the ubz domain of Polη, which intrinsically lacks the pip motif directly binds to the interdomain connecting loop (IDCL) of PCNA and regulates Polη''s TLS activity. We further propose two distinct modes of PCNA interaction mediated either by pip motif or ubz domain in various Polη homologs. When the pip motif or ubz domain of a given Polη binds to the IDCL of PCNA, such interaction becomes essential, whereas the binding of ubz domain to PCNA through ubiquitin is dispensable for Polη''s function.  相似文献   

13.
The activity of telomerase in cancer cells is tightly regulated by numerous proteins including DNA replication factors. However, it is unclear how replication proteins regulate telomerase action in higher eukaryotic cells. Previously we have demonstrated that the multifunctional DNA replication and repair protein flap endonuclease 1 (FEN1) is in complex with telomerase and may regulate telomerase activity in mammalian cells. In this study, we further analyzed the nature of this association. Our results show that FEN1 and telomerase association occurs throughout the S phase, with the maximum association in the mid S phase. We further mapped the physical domains in FEN1 required for this association and found that the C-terminus and the nuclease domain of FEN1 are involved in this interaction, whereas the PCNA binding ability of FEN1 is dispensable for the interaction. These results provide insights into the nature of possible protein–protein associations that telomerase participates in for maintaining functional telomeres.  相似文献   

14.
15.
The subunit that mediates binding of proliferating cell nuclear antigen (PCNA) to human DNA polymerase delta has not been clearly defined. We show that the third subunit of human DNA polymerase delta, p66, interacts with PCNA through a canonical PCNA-binding sequence located in its C terminus. Conversely, p66 interacts with the domain-interconnecting loop of PCNA, a region previously shown to be important for DNA polymerase delta activity and for binding of the cell cycle inhibitor p21(Cip1). In accordance with this, a peptide containing the PCNA-binding domain of p21(Cip1) inhibited p66 binding to PCNA and the activity of native three-subunit DNA polymerase delta. Furthermore, pull-down assays showed that DNA polymerase delta requires p66 for interaction with PCNA. More importantly, only reconstituted three-subunit DNA polymerase delta displayed PCNA-dependent DNA replication that could be inhibited by the PCNA-binding domain of p21(Cip1). Direct participation of p66 in PCNA-dependent DNA replication in vivo is demonstrated by co-localization of p66 with PCNA and DNA polymerase delta within DNA replication foci. Finally, in vitro phosphorylation of p66 by cyclin-dependent kinases suggests that p66 activity may be subject to cell cycle-dependent regulation. These results suggest that p66 is the chief mediator of PCNA-dependent DNA synthesis by DNA polymerase delta.  相似文献   

16.
Yang Q  Berton N  Manning MC  Catalano CE 《Biochemistry》1999,38(43):14238-14247
The terminase enzyme from bacteriophage lambda is responsible for the insertion of a dsDNA genome into the confines of the viral capsid. The holoenzyme is composed of gpA and gpNu1 subunits in a gpA(1) x gpNu1(2) stoichiometry. While genetic studies have described regions within the two proteins responsible for DNA binding, capsid binding, and subunit interactions in the holoenzyme complex, biochemical characterization of these domains is limited. We have previously described the cloning, expression, and biochemical characterization of a soluble DNA binding domain of the terminase gpNu1 subunit (Met1 to Lys100) and suggested that the hydrophobic region spanning Lys100 to Pro141 defines a domain responsible for self-association interactions, and that is important for cooperative DNA binding [Yang et al. (1999) Biochemistry 38, 465-477]. We further suggested that the genetically defined gpA-interactive domain in the C-terminal half of the protein is limited to the C-terminal approximately 40 amino acids of gpNu1. Here we describe the cloning, expression, and biochemical characterization of gpNu1DeltaP141, a deletion mutant of gpNu1 that comprises the DNA binding domain and the putative hydrophobic self-assembly domain of the full-length protein. Purified gpNu1DeltaP141 shows a strong tendency to aggregate in solution; However, the protein remains soluble in 0.4 M guanidine hydrochloride, and circular dichroism (CD) and fluorescence spectroscopic studies demonstrate that the protein is folded under these conditions. Moreover, CD spectroscopy and thermally induced unfolding studies suggest that the DNA binding domain and the self-association domain represent independent folding domains of gpNu1DeltaP141. The mutant protein interacts weakly with the gpA subunit, but does not form a catalytically competent holoenzyme complex, suggesting that the C-terminal 40 residues are important for appropriate subunit interactions. Importantly, gpNu1DeltaP141 binds DNA tightly, but with less specificity than does full-length protein, and the data suggest that the C-terminal residues are further required for specific DNA binding activity. The implications of these results in the assembly of a functional holoenzyme complex are discussed.  相似文献   

17.
Flap endonuclease-1 (FEN-1) is a structure-specific nuclease best known for its involvement in RNA primer removal and long-patch base excision repair. This enzyme is known to possess 5′-flap endo- (FEN) and 5′–3′ exo- (EXO) nuclease activities. Recently, FEN-1 has been reported to also possess a gap endonuclease (GEN) activity, which is possibly involved in apoptotic DNA fragmentation and the resolution of stalled DNA replication forks. In the current study, we compare the kinetics of these activities to shed light on the aspects of DNA structure and FEN-1 DNA-binding elements that affect substrate cleavage. By using DNA binding deficient mutants of FEN-1, we determine that the GEN activity is analogous to FEN activity in that the single-stranded DNA region of DNA substrates interacts with the clamp region of FEN-1. In addition, we show that the C-terminal extension of human FEN-1 likely interacts with the downstream duplex portion of all substrates. Taken together, a substrate-binding model that explains how FEN-1, which has a single active center, can have seemingly different activities is proposed. Furthermore, based on the evidence that GEN activity in complex with WRN protein cleaves hairpin and internal loop substrates, we suggest that the GEN activity may prevent repeat expansions and duplication mutations.  相似文献   

18.
Eukaryotic proliferating cell nuclear antigen (PCNA) plays an essential role in orchestrating the assembly of the replisome complex, stimulating processive DNA synthesis, and recruiting other regulatory proteins during the DNA damage response. PCNA and its binding partner network are relatively conserved in eukaryotes, and it exhibits extraordinary structural similarity across species. However, despite this structural similarity, the PCNA of a given species is rarely functional in heterologous systems. In this report, we determined the X-ray crystal structure of Neurospora crassa PCNA (NcPCNA) and compared its structure–function relationship with other available PCNA studies to understand this cross-species incompatibility. We found two regions, the interdomain connecting loop (IDCL) and J loop structures, vary significantly among PCNAs. In particular, the J loop deviates in NcPCNA from that in Saccharomyces cerevisiae PCNA (ScPCNA) by 7 Å. Differences in the IDCL structures result in varied binding affinities of PCNAs for the subunit Pol32 of DNA polymerase delta and for T2-amino alcohol, a small-molecule inhibitor of human PCNA. To validate that these structural differences are accountable for functional incompatibility in S. cerevisiae, we generated NcPCNA mutants mimicking IDCL and J loop structures of ScPCNA. Our genetic analyses suggested that NcPCNA mutants are fully functional in S. cerevisiae. The susceptibility of the strains harboring ScPCNA mimics of NcPCNA to various genotoxic agents was similar to that in yeast cells expressing ScPCNA. Taken together, we conclude that in addition to the overall architecture of PCNA, structures of the IDCL and J loop of PCNA are critical determinants of interspecies functional compatibility.  相似文献   

19.
20.
DNA polymerase lambda (Pol lambda) is a novel enzyme of the family X of DNA polymerases. Pol lambda has some properties in common with DNA polymerase beta (Pol beta). The substrate properties of Pol lambda were compared to Pol beta using DNAs mimicking short-patch (SP) and long-patch (LP) base excision repair (BER) intermediates as well as recessed template primers. In the present work, the influence of several BER proteins such as flap-endonuclease-1 (FEN1), PCNA, and apurinic/apyrimidinic endonuclease-1 (APE1) on the activity of Pol lambda was investigated. Pol lambda is unable to catalyze strand displacement synthesis using nicked DNA, although this enzyme efficiently incorporates a dNMP into a one-nucleotide gap. FEN1 and PCNA stimulate the strand displacement activity of Pol lambda. FEN1 processes nicked DNA, thus removing a barrier to Pol lambda DNA synthesis. It results in a one-nucleotide gapped DNA molecule that is a favorite substrate of Pol lambda. Photocrosslinking and functional assay show that Pol lambda is less efficient than Pol beta in binding to nicked DNA. APE1 has no influence on the strand displacement activity of Pol lambda though it stimulates strand displacement synthesis catalyzed with Pol beta. It is suggested that Pol lambda plays a role in the SP BER rather than contributes to the LP BER pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号