首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of taurine (in drinking water for 6 weeks) on PGI2 and TXA2 synthesis by some female rat organs was investigated using radioimmunoassay and platelet antiaggregatory bioassay. Taurine 100 and 200 mg/kg/day increased aortic PGI2 release from 0.59 ± 0.04 (control) to 0.85 ± 0.05 and 1.01 ± 0.06 ng/mg, respectively and that by the myometrium from 0.24 ± 0.02 (control) to 0.38 ± 0.01 and 0.50 ± 0.04 ng/mg wet tissue, respectively (P < 0.05, n = 6). It did not affect PGI2 and TXA2 production in the heart or TXA2 in the aorta. Taurine 200 mg/kg depressed uterine TXA2 synthesis from 148.6 ± 9.8 (control) to 85.4 ± 6.8 pg/mg (P < 0.05, n = 6). Furthermore taurine 0.4 and 0.8 mM in vitro stimulated PGI2 released by the myometrial and aortic tissues from pregnant rats. The stimulant effect of taurine on PGI2 may be related to its antioxidant effect whereas its inhibitory effect on uterine TXA2 may result from direction of synthesis towards PGI2. It is concluded that endogenous taurine may participate in regulation of PGs synthesis and that prostanoids may contribute to its known actions. On broad basis, taurine-induced release of PGI2 may prove of potential value in those ailments characterised by deficiency in PGI2 release.  相似文献   

2.
These experiments were conducted to determine the effects of dipyridemole on human platelet aggregation, platelet thromboxane A2 (TXA2) and human vessel wall prostacyclin (PGI2) generation. Dipyridamole in varying concentrations (5 to 50 μg/ml) had no direct effect on ADP-induced platelet aggregation in vitro, but it potentiated PGI2-induced platelet aggregation inhibition at these concentrations. Dipyridamole also inhibited arachidonic acid-induced platelet TXA2 generation at these concentrations. In continuously perfused umbilical vein segments, dipyridamole treatment resulted in stimulation of PGI2 release determined by bioassay and by measurement of its stable metabolite 6-keto-PGF. Minimum concentration of dipyridamole causing PGI2 release was 50 μg/ml. These in vitro studies suggest that anti-thrombotic effects of dipyridamole in man are mediated mainly by potentiation of PGI2 activity and to some extent by TXA2 suppression. Stimulation of PGI2 release by human vessels may not be seen in usual therapeutic concentrations.  相似文献   

3.
Furosemide increases the synthesis of two major renal eicosanoids, prostacylin (PGI2) and thromboxane A2 (TXA2), by stimulating the release of arachidonic acid which in turn is metabolized to PGG2/PGH2, then to PGI2 and TXA2. PGI2 may mediate, in part, the early increment in plasma renin activity (PRA) after furosemide. We hypothesized that thromboxane synthetase inhibition should direct prostaglandin endoperoxide metabolism toward PGI2, thereby enhancing the effects of furosemide on renin release. Furosemide (2.0 mg.kg−1 i.v.) was injected into Sprague-Dawley rats pretreated either with vehicle or with U-63, 557A (a thromboxane synthetase inhibitor, 2 mg/kg−1 followed by 2 mg/kg−1.hr−1). Urinary 6ketoPGF1 α and thromboxane B2 (TXB2), reflecting renal synthesis of PGI2 and TXA2, as well as PRA and serum TXB2, were measured. Serum TXB2 was reduced by 96% after U-63, 557A. U-63, 557A did not affect the basal PRA. Furosemide increased PRA in both vehicle and U63, 557A treated rats. However, the PRA-increment at 10, 20 and 40 min following furosemide administration was greater in U-63, 557A-treated rats than in vehicle-treated rats and urine 6ketoPGF1 α excretion rates were increased. These effects of thromboxane synthesis inhibition are consistent with a redirection of renal PG synthesis toward PGI2 and further suggest that such redirection can be physiologically relevant.  相似文献   

4.
There is growing evidence that blood vessels generate TXA2 in addition to PGI2. We examined effluents from continously perfused human umbilical vein and supernatants from umbilical vein rings for TXB2 and 6-keto-PGF measurements (stable metabolites of TXA2 and PGI2, respectively). TXB2 and 6-keto-PGF were identified in all samples. 6-keto-PGF to TXB2 ratio was higher in intact vein effluents than in the venous ring supernatants (112:1 and 28:1, respectively, P<0.01). Arachidonate stimulation increased 6-keto-PGF and TXB2 levels similarly in the intact vein effluent. In contrast, stimulation of the venous rings resulted in a relatively larger increase in TXB2 than in 6-keto-PGF. This caused 6-keto-PGF to TXB2 ratio to decline (p<0.01). The identity of TXB2 was confirmed in several different ways. These data suggest that 1) human umbilical veins produce TXA2 in addition to PGI2, 2) TXA2 release is more by venous rings than by the intact vein probably reflecting contribution from non-endothelial layers, and 3) arachidonate stimulation causes relatively greater release of TXA2 than of PGI2 from the venous rings, whereas release of PGI2 and TXA2 is similar from the intact vein.  相似文献   

5.
The influence of platelets and platelet membranes on the generation of prostacyclin (PGI2) and thromboxane A2(TXA2) by isolated rat lung and porcine aortic endothelial cell, as measured by RIA of their stable end-producs, 6-oxo-PGF and TXB2 respectively, was studied. After introduction of either aspirin-treated platelets or membranes from aspirin-treated platelets to the perfusate, 1 5-fold increase in the amount of 6-oxo-PGF and TXB2 in the perfusate was observed. Treatment of the lung with aspirin produced a 50% reduction in the platelet-stimulated release of PGI2 and TXA2. Treatment of the lung with the phospholipase inhibitor, mepacrine, significantly reduced the platelet-stimulated release of PGI2 and TXA2. Incubation of endothelial cells with untreated platelet membranes did not alter the generation of PGI2. These results suggest that platelet-stimulated release of PGI2 and TXA2 occurs via mechanical stimulation of phospholipase A2, liberating arachidonic acid.  相似文献   

6.
Histamine 2.5, 5, 10 or 20 μg/kg i.v. induce a pronounced bronchospasm in guinea-pigs, accompanied by a dose-related increase of TXA2 in arterial blood, as revealed by contraction of rabbit isolated aorta and by radioimmunoassay. Aspirin 10 mg/kg prevented formation of TXA2 like material without significantly modifying the severity of the bronchospasm. Bradykinin 0.5, 1 or 2 μg/kg i.v. acted similarly, except that pretreatment with aspirin blocked both the increased airway resistance and release of TXA2. Aspirin also blocked the increase in blood pressure and heart rate caused by histamine or bradykinin.  相似文献   

7.
The study was performed to investigate the influence of lipoproteins (LP) on the thromboxane (TX) A2 formation capacity of platelets in clotting whole blood in vitro. The different lipoprotein fractions VLDL, LDL, HDL2 and HDL3 were isolated from blood of normo- or dyslipidemic volunteers by ultracentrifugation. These lipoproteins were incubated in blood with different levels of serum total cholesterol (TC) taken from normolipidemics (TC < 200 mg/dl), moderate hypercholesterolemics (TC: 200–250 mg/dl) or subjects with high cholesterol level (TC > 250 mg/dl), respectively. The amount of serum TXA2 formed within 60 min at 37°C was measured by enzyme immunoassay. The results obtained show that the efficacy of separate LP fractions to influence the TXA2 production depends not only on the type of LP fraction but also on the source of plasma used for isolation of LP and on the cholesterol level in the blood for incubation: LDL taken from normolipidemics or moderate hyperlipidemics inhibited the TXA2 formation in blood from normolipidemics (P < 0.02, respectively), but enhanced it in blood from persons with moderate hypercholesterolemia (P < 0.05). LDL from hyperlipidemics enhanced TXA2 production in blood from hyperlipidemics (P < 0.05). The HDL2 fractions inhibited the TXA2 formation in blood from normo- and hypercholesterolemics (P < 0.02, resp.), but there was no effect of HDL2 in clotting blood from persons with moderate hypercholesterolemia. All HDL3 fractions tested inhibited the TXA2 formation in all types of blood used for clotting (P < 0.02, resp.), probably due to their great cholesterol accepting capacity.  相似文献   

8.
Prostacyclin (PGl2) and thromboxane A2 (TXA2) play an important role in the pathophysiology of various cardiovascular diseases. The balance between PGl2 and TXA2 regulates the interaction between platelets and the vessel wall in vivo. In this study we measured PGl2 and TXA2 synthesis by analysing their urinary index metabolites 2,3-dinor-6-keto-PGF and 11-dehydro-TXB2, respectively, in acute (10 patients) and chronic (10 patients) lower limb ischaemia. Both PGl2 and TXA2 synthesis were increased about two-fold in patients with acute lower limb ischaemia compared to chronic lower limb ischaemia. However, the PGl2/TXA2 ratio was more or less the same in acute and chronic lower limb ischaemia. In patients with acute lower limb ischaemia caused by thrombotic occlusion, PGl2 and TXA2 formation were about two times higher than in patients with acute lower limb ischaemia caused by embolic occlusion. Elevation of PGl2 and TXA2 synthesis in acute lower limb ischaemia may reflect increased platelet-vascular wall interactions without changing the PGl2/TXA2 ratio.  相似文献   

9.
New series of 5-benzyl-6-methyl-4-oxo pyridazin-2-yl alkanoic acids, N-[(pyridazin-2-yl)alkyl] succinyl and glutaryl amides have been synthesized and evaluated in vitro as TXA2 biosynthesis inhibitors. The experiments were carried out using arachidonic acid (32.8 μM) as a substrate and horse platelet microsomes as sources of TXA2 synthase. The presence of TXB2, a stable metabolite of TXA2, was determined by RIA. The potency of active compounds (1.10−4 < IC 50 < 1.10−6 M) greatly depends on the length of the chain at the N-2 position on the pyridazine ring. Furthermore, enzyme inhibition in vitro is increased with the presence of a halogen atom on the aromatic moiety of the benzyl group at C-5. Compound 4f having a pentanoic side chain and a 4-fluoro benzyl moiety was the most active derivative with an IC50 value of 6.69 × 10−6 M. Molecular modelling studies were done on all the synthesized pyridazinones and on prostaglandin H2 (PGH2) suggesting spatial features and volumes of TXA2 synthase pharmacophore mode in these series of derivatives.  相似文献   

10.
The levels of the stable degradation products of prostacyclin (PGI2) and thromboxane A2 (TXA2): 6-oxo-prostaglandin F(6-oxo-PGE) and thromboxane B2 (TXB2) respectively were determined in the effluent of the rabbit epigastric skin flap after infusion of exogenous arachidonic acid. The blood to the flap passes through the microcirculation and thus the changes in eicosanoid biosynthesis in this part of the vasculature were recorded. The aim was to use inhibitors of arachidonic acid metabolism to increase the PGI2/TXA2 ratio. This may be potentially beneficial to ischaemic skin flaps by reducing platelet aggregation associated with damaged microvascular endothelium, overcoming vasospasm and increasing microvascular blood flow. Increased PGI2/TXA2 ratios (up to 5-fold) were best achieved using TXA2 synthetase inhibitors such as dazoxiben hydrochloride. These were significantly more potent than the phosphodiesterase inhibitor dipyridamole, and the lipoxygenase inhibitor Bay g6575. No increase in blood flow was achieved. The cyclooxygenase inhibitor indomethacin did slow the blood flow at high concentrations (above 10−5 M), and inhibited both PGI2 and TXA2 synthesis. Approximately 2-fold higher concentrations of dazoxiben hydrochloride and dipyridamole were required to produce the same TXA2 synthetase inhibition in the flap microvasculature compared with platelets .  相似文献   

11.
The formation of prostacyclin (PGI2) and thromboxane A2 (TXA2) (measured as the stable metabolites 6-keto-PGF and TXB2) during stimulation with vasoactive autocoids was registered in human umbilical arteries perfused . Responses were registered within 3–4 minutes after addition of the subtances. Both angiostensin I and II were found to increase the formation of PGI2 while depressing that of TXA2. Serotonin increased the formation of TXA2 but not that of PGI2. Both PGE2 and PGF stimulated the PGI2 formation. The TXA2 mimetic U46619, increased PGI2 production, whereas PGI2 slighlty increased the formation of TXA2. All responses were found to be completely inhibited by indomethacin.  相似文献   

12.
Interleukin-6 (IL-6) is a cytokine involved in the differentiation of B-cells to antibody secreting plasma cells, the activation of T-cells, and the stimulation of hepatocyte production of acute phase proteins. Because of the pro-inflammatory effects of this cytokine, we investigated the ability of the fatty acid arachidonic acid (AA) to regulate the release of IL-6 from rat resident peritoneal macrophages (Mø) in vitro. AA (0.5–16 μM) stimulated IL-6 release during a 4 h incubation period in a biphasic manner, with 4 μM AA generating a peak of IL-6 release (3-5-fold). AA (0.5–16 μM) also induced an increasing release of the AA metabolite thromboxane B2 (TXB2). The AA-induced release of IL-6 occurred within 1–2 h of incubation, whereas TXB2 concentrations were elevated within 5 min of AA treatment. The TX synthetase inhibitor CGS 12970 (4.0 μM and 40.0 μM) effectively blocked the generation of TXB2, but increased prostacyclin (PGI2) generation and potentiated the release of IL-6. In addition, PGI2, as well as the PGI2 agonists iloprost and cicaprost, stimulated IL-6 release from Mø by greater than 5-fold over vehicle-treated basal levels. These data suggest that PGI2 (but not TXA2) is involved in AA-induced IL-6 release from peritoneal Mø.  相似文献   

13.
Rat aortic strips and rabbit aortic strips were superfused in series with Krebs solution. Comparison of the sensitivity of the tissues to thromboxane A2 (TXA2), generated by mixing prostaglandin (PG)H2 with human platelet microsomes (HPM), indicated that the rat aorta was just as sensitive an assay tissue as the rabbit aorta. Furthermore, it was equally selective in that it did not respond to low levels of the other metabolites of arachidonic acid. When the two tissues were used simultaneously to assay aortic contracting activity released from perfused guinea pig lung by bradykinin, both tissues detected activity that could be matched with similar known amounts of TXA2. However, when ovalbumin was used to release aortic contracting activity from sensitized guinea pig lung, the amounts of TXA2 needed to match the responses of the assay tissues often differed by 2–3 fold. This suggested that other substances, as well as TXA2, released during anaphylaxis can affect the aortic strips and thus influence the bioassay of TXA2. This discrepancy in assay of TXA2 can be detected only when more than one assay tissue is used. In the series of experiments in which we used the assay tissues to detect TXA2 released by bradykinin, we noted that bradykinin released more TXA2 from unsensitized lungs than from sensitized ones. Although the significance of this observation remains unclear, it suggests that there are quantitative differences in the PG biosynthetic pathways induced by the sensitization process.  相似文献   

14.
The role of cAMP dependent regulation in thromboxane A2, prostacyclin and PGF synthesis (measured by radioimmunoassay) was investigated in isolated mouse hepatocytes and in microsomal membranes prepared from these cells. In isolated hepatocytes N6,O2-dibutyryl cAMP inhibited the formation of all the three derivatives, while calcium ionophore A 23187 stimulated their synthesis. Addition of the dissociated catalytic subunit of cAMP dependent protein kinase and ATP to microsomal membranes inhibited the production of TXA2, PGI2 and PGF by about 50% and this inhibition was counteracted by the combined addition of heat stable inhibitor protein of cAMP dependent protein kinase. It is concluded that in parenchylmal liver cells cAMP dependent phosphorylation is directly involved in the inhibition of prostanoid synthesis.  相似文献   

15.
We have investigated the presence of thromboxane A2 (TXA2) receptor associated with lipid rafts in human platelets and the regulation of platelet function in response to TXA2 receptor agonists when lipid rafts are disrupted by cholesterol extraction. Platelet aggregation with TXA2 analogs U46619 and IBOP was almost blunted in cholesterol-depleted platelets, as well as αIIbβ3 integrin activation and P-selectin exposure. Raft disruption also inhibited TXA2-induced cytosolic calcium increase and nucleotide release, ruling out an implication of P2Y12 receptor. An important proportion of TXA2 receptor (40%) was colocalized at lipid rafts. The presence of the TXA2 receptor associated with lipid rafts in platelets is important for functional platelet responses to TXA2.  相似文献   

16.
Preeclampsia (PE) is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2) and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl) to wild-type mice resulted in elevated placental TXA2 synthase (TXAS) and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg), and decreased pup weight (~50%) and size (~24%), but these adverse effects were ameliorated in TXAS knockout (KO) mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway.  相似文献   

17.
The presence of endotoxin in plasma and patterns of stable metabolites of prostacyclin (PC), thromoxane A2 (TXA2) and prostaglandin E2 (PGE2) were determined during the first postpartum estrous cycles in sixteen dairy cows. These included 8 cows with uterine infections which exhibited shortened luteal phases (SC) and 8 cows which had normal luteal phases (NC) after the first post partum ovulations. Endotoxin was consistently detected in all SC cows during the abbreviated estrous cycles while plasma samples of NC cows were free of endotoxin. Plasma concentrations of TXA2 metabolite was higher in SC cows (p<0.05) (1785–3452 pg/ml) compared to NC cows (723–1240 pg/ml). Similarly, plasma concentrations of PC metabolite was higher in SC cows (p<0.07) (423–1847 pg/ml) compared to NC cows (159–325 pg/ml). In contrast, plasma concentrations of PGE2 metabolite was higher in NC cows (p<0.05) (850–2219 pg/ml) compared to SC cows (455–628 pg/ml). The results of this study suggest that postpartum uterine infections mediate the release of prostaglandins from the uteri by means of the endotoxin and endotoxin appears to stimulate selectively the production of PC and TXA2 favoring early demise of corpora lutea formed after first postpartum ovulations in dairy cows.  相似文献   

18.
The effects of repeated antigen exposure on the synthesis of mediators by lung tissues are not well understood. To investigate the influence of antigen challenge on the synthesis of prostaglandins by central airway and peripheral lung tissues, fourteen sensitive sheep underwent biweekly exposure to aerosolized Ascaris suu antigen (7) or saline (7). Following the fifth exposure, microsomal and high speed supernatant fractions were prepared from trachealis muscle and lung parenchyma. Synthesis of thromboxane (TX) A2, prostaglandin (PG) D2 and PGI2 from the PG endoperoxide intermediate, PGH2, was assayed over a range of substrate concentrations from 3–200 uM. Synthesis of PGI2 by trachealis microsomes was approximately 5-fold greater than that of TXA2. PGI2 and TXA2 production was identical in tracheal preparations from Ascaris- and saline-exposed animals. In parenchymal tissues, where TXA2 production predominated over PGI2 by 9-fold, preparations from Ascaris- exposed animals synthesized 50% more TXA2 than controls at PGH2 concentrations of 25 uM and above, whereas synthesis of PGI2 and PGD2 were similar in preparations from both groups of animals. The density of pulmonary mast cells was decreased by 21% in the Ascaris group, whereas polymorphonuclear leukocyte density was unchanged. These results demonstrate the differential synthesis of TXA2 and PGI2 in central airways and peripheral lung regions of the sheep. They further indicate that repeated exposure of the airways to antigen selectively enhances TXA2 synthesis in the lung periphery of sensitized animals. The site of this increased enzymatic activity, whether in resident cells or newly-infiltrated cells, has not been determined.  相似文献   

19.
Metabolism of arachidonic acid (AA) was studied in perfused lungs and kidneys of normal and atherosclerotic rabbits by determination of PGE2, PGF and the stable metabolites of PGI2 (6-keto-PGF) and TXA2 (TXB2). PGI2 was the main AA metabolite formed by normal lungs and kidneys. Atherosclerosis reduced the formation of PGI2 by about 50 % in both organs. TXA2 formation was similarily decreased in lungs. In kidneys, the decrease in PGI2 formation was accompanied by an increase in PGE2 formation.  相似文献   

20.
Exogenous arachidonate addition to the coupled system of platelets and aortic microsomes resulted in production of TXA2 and PGI2 (detected as the stable degradation products, TXB2 and 6-keto PGF, respectively). Imidazole, papaverine and dipyridamole increased PGI2 and decreased TXA2 in the coupled system. All of these agents inhibited TXA2 formation by platelets from arachidonate. Nitroglycerin did not show any effect on PGI2 and TXA2 formation in the coupled system and on TXA2 formation by platelets. In contrast with these compounds, in spite of showing no inhibitory effect on TXA2 formation by platelets alone, 2-nicotinamidoethyl nitrate (SG-75) increased PGI2 and decreased TXA2 in the coupled system. It is suggested that SG-75 accelerated the conversion of PGH2 to PGI2 so that smaller amounts of TXA2 was produced in the coupled system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号