首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
DNA fragmentation factor (DFF) comprises DFF45 and DFF40 subunits, the former of which acts as an inhibitor of the latter (the catalytic subunit) and whose cleavage by caspase-3 results in DFF activation. Disruption of the DFF45 gene blocks the generation of 50-kb DNA fragments and confers resistance to apoptosis. We recently suggested that the early fragmentation of DNA by DFF and the consequent activation of poly(ADP-ribose) polymerase-1 (PARP-1), mitochondrial dysfunction, and activation of caspase-3 contribute to an amplification loop in the apoptotic process. To verify the existence of such a loop, we have now examined the effects of restoring DFF expression in DFF45-deficient fibroblasts. Co-transfection of mouse DFF45(-/-) fibroblasts with plasmids encoding human DFF40 and DFF45 reversed the apoptosis resistance normally observed in these cells. The DFF45(-/-) cells regained the ability to fragment their DNA into 50-kb pieces in response to TNF, which resulted in a marked activation of PARP-1 and a concomitant depletion of intracellular NAD. DFF expression also resulted in an increase both in cytochrome c release into the cytosol and in caspase-3 activation triggered by TNF. These results support the importance of DFF, PARP-1, mitochondria, and caspase-3 in an amplification phase of TNF-induced apoptosis.  相似文献   

2.
3.
Ras signaling in tumor necrosis factor-induced apoptosis.   总被引:5,自引:0,他引:5       下载免费PDF全文
Tumor necrosis factor (TNF) exerts cytotoxicity on many types of tumor cells but not on normal cells. The molecular events leading to cell death triggered by TNF are still poorly understood. Our previous studies have shown that enforced expression of an activated H-ras oncogene converted non-tumorigenic, TNF-resistant C3H 10T1/2 fibroblasts into tumorigenic cells that also became very sensitive to TNF-induced apoptosis. This finding suggested that Ras activation may play a role in TNF-induced apoptosis. In this study we investigated whether Ras activation is an obligatory step in TNF-induced apoptosis. Introduction of two different molecular antagonists of Ras, the rap1A tumor suppressor gene or the dominant-negative rasN17 gene, into H-ras-transformed 10TEJ cells inhibited TNF-induced apoptosis. Similar results were obtained with L929 cells, a fibroblast cell line sensitive to TNF-induced apoptosis, which does not have a ras mutation. While Ras is constitutively activated in TNF-sensitive 10TEJ cells, TNF treatment increased Ras-bound GTP in TNF-sensitive L929 cells but not in TNF-resistant 10T1/2 cells. Moreover, RasN17 expression blocked TNF-induced Ras-GTP formation in L929 cells. These results demonstrate that Ras activation is required for TNF-induced apoptosis in mouse fibroblasts.  相似文献   

4.
Poly(ADP-ribose) polymerase activity was measured in a crude nuclear fraction isolated from HeLa cells. It was found that the addition of ammonium sulfate or other salts to the standard incubation medium inhibited the formation of poly(ADP-ribose). Through the use of alkaline sucrose density gradients it was also noted that this same increase in ionic strength inhibited the in vitro breakdown of the HeLa DNA. Additional experiments with alkaline sucrose density gradients and deoxyribonuclease I showed that the in vitro activity of poly(ADP-ribose) polymerase is largely dependent upon DNA fragmentation but that DNA fragmentation at least in vitro is not dependent upon the formation of poly(ADP-ribose). These observations imply that this nuclear enzyme is not extremely sensitive to changes in the ionic strength of the reaction media but is affected indirectly, supposedly through changes in the endonuclease activity of the HeLa nuclei. If this proves to be true, then the addition of salt to the incubation medium for poly(ADP-ribose) polymerase could prove to be a valuable tool for the study of ADP-ribosylation reactions.  相似文献   

5.
6.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose adenosine (5) diphospho(5)--D ribose - poly(ADP-ribose) polymer of ADP-ribose - mRNP messenger ribonucleoprotein particles - PMSF phenylmethylsulfonyl fluoride - LDS lithium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

7.
Apoptosis is an important cell suicide program which involves the caspases activation and is implicated in physiological and pathological processes. Poly(ADP-ribose) polymerase (PARP) cleavage is often associated with apoptosis and has been served as one hallmark of apoptosis and caspase activation. In this study, we aimed to determine TGF-beta1-induced apoptosis and to examine the involvement of caspases and its relationship with PARP cleavage. TGF-beta1 induces strong apoptosis of AML-12 cells which can be detected by DNA fragmentation, FACS, and morphological assays. Z-VAD-fmk, a selective caspase inhibitor, partially inhibits the TGF-beta1-induced apoptosis; but has no effect on TGF-beta1-induced DNA fragmentation and PARP cleavage. However, BD-fmk, a broad-spectrum caspase inhibitor, completely suppresses TGF-beta1-induced apoptosis, but unexpectedly does not inhibit TGF-beta1-induced PARP cleavage. Furthermore, Z-VAD-fmk treatment is able to completely inhibit the daunorubicin-induced apoptosis in A-431 cells, but only slightly blocks the daunorubicin-induced PARP cleavage, whereas BD-fmk can inhibit both daunorubicin-induced apoptosis and PARP cleavage completely. In addition, we observed that both TGF-beta1-induced apoptosis and PARP degradation in AML-12 cells can be completely blocked by inhibiting the protein synthesis with cycloheximide. These results demonstrate for the first time that TGF-beta1-induced caspase-dependent apoptosis is associated with caspase-independent PARP cleavage that requires the TGF-beta1-induced synthesis of new proteins. The results indicate that caspase-3 is not a major caspase involved in TGF-beta1-induced apoptosis in AML-12 cells, and is not required for apoptosis-associated DNA fragmentation. The results also suggest that PARP cleavage may occur as an independent event that can be disassociated with cell apoptosis.  相似文献   

8.
Alkylation treatment of HeLa cells results in the rapid induction of apoptosis as revealed by DNA laddering and cleavage of poly(ADP-ribose) polymerase (PARP) into the 29-and 85-kDa fragments (Kumari S. R., Mendoza-Alvarez, H. & Alvarez-Gonzalez, R. (1998) Cancer Res. 58, 5075-5078). Here, we performed a time-course analysis of (i) poly(ADP-ribose) synthesis and degradation as well as (ii) the subnuclear localization of PARP and its fragments by using confocal laser scanning immunofluorescence microscopy. PARP was activated within 15 min post-treatment, as revealed by nuclear immunostaining with antibody 10H (recognizing poly(ADP-ribose)). This was followed by a late, time-dependent, progressive decline of 10H signals that coincide with the time of PARP cleavage. Strikingly, nucleolar immunostaining with antibodies 10H and C-II-10 (recognizing the 85-kDa PARP fragment) was lost by 15 min post-treatment, whereas F-I-23 signals (recognizing the 29-kDa fragment) persisted. We hypothesize that the 85-kDa PARP fragment is translocated, along with covalently bound poly(ADP-ribose), from nucleoli to the nucleoplasm, whereas the 29-kDa fragment is retained, because it binds to DNA strand breaks. Our data (i) provide a link between the known time-dependent bifunctional role of PARP in apoptosis and the subcellular localization of PARP fragments and also (ii) add to the evidence for early proteolytic changes in nucleoli during apoptosis.  相似文献   

9.
PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase.   总被引:23,自引:0,他引:23  
Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins in response to DNA damage that activates the base excision repair machinery. Poly(ADP-ribose) polymerase which we will now call PARP-1, has been the only known enzyme of this type for over 30 years. Here, we describe a cDNA encoding a 62-kDa protein that shares considerable homology with the catalytic domain of PARP-1 and also contains a basic DNA-binding domain. We propose to call this enzyme poly(ADP-ribose) polymerase 2 (PARP-2). The PARP-2 gene maps to chromosome 14C1 and 14q11.2 in mouse and human, respectively. Purified recombinant mouse PARP-2 is a damaged DNA-binding protein in vitro and catalyzes the formation of poly(ADP-ribose) polymers in a DNA-dependent manner. PARP-2 displays automodification properties similar to PARP-1. The protein is localized in the nucleus in vivo and may account for the residual poly(ADP-ribose) synthesis observed in PARP-1-deficient cells, treated with alkylating agents or hydrogen peroxide.  相似文献   

10.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase have been detected in chromatin extracts from the dinoflagellate Crypthecodinium cohnii. Poly(ADP-ribose) glycohydrolase was detected by the liberation of ADP-ribose from poly(ADP-ribose). Poly(ADP-ribose) polymerase was proved by (a) demonstration of phosphoribosyl-AMP in the phosphodiesterase digest of the reaction product, (b) demonstration of ADP-ribose oligomers by fractionation of the reaction product on DEAE-Sephadex. The (ADP-ribose)-protein transfer is dependent on DNA; it is inhibited by nicotinamide, thymidine, theophylline and benzamide. The protein-(ADP-ribose bond is susceptible to 0.1 M NaOH (70%) and 0.4 M NH2OH (33%). Dinoflagellates, nucleated protists, are unique in that their chromatin lacks histones and shows a conformation like bacterial chromatin [Loeblich, A. R., III (1976) J. Protozool. 23, 13--28]; poly(ADP-ribose) polymerase, however, has been found only in eucaryotes. Thus our results suggest that histones were not relevant to the establishment of poly(ADP-ribose) during evolution.  相似文献   

11.
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins, using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose). These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection of poly(ADP-ribose) allows screening for cells with altered enzyme activity.  相似文献   

12.
13.
An attempt was made to demonstrate poly (ADP-ribose) polymerase cytologically. In vitro incorporation from the nucleotide, [3H]NAD was detected in frozen sections of onion embryo and meristematic tissue by autoradiography. In meristematic tissue, there was a correlation between the number of cells displaying intensein vitro incorporation from [3H]NAD and cytological DNA polymerase activity. Performed enzymes effecting a distinct incorporation from [3H]NAd were localized in the nuclei of all tissues of the ungerminated seed except the endosperm. Evidence for poly (ADP-ribose) polymerase has been obtained for the first time from higher plant cells and localized cytologically.  相似文献   

14.
Molecular interactions between purified poly(ADP-ribose) polymerase, whole thymus histones, histone H1, rat fibroblast genomic DNA, and closed circular and linearized SV40 DNA were determined by the nitrocellulose filter binding technique. Binding of the polymerase protein or histones to DNA was augmented greatly when both the enzyme protein and histones were present simultaneously. The polymerase protein also associated with histones in the absence of DNA. The cooperative or promoted binding of histones and the enzyme to relaxed covalently closed circular SV40 DNA was greater than the binding to the linearized form. Binding of the polymerase to SV40 DNA fragments in the presence of increasing concentrations of NaCl indicated a preferential binding to two restriction fragments as compared to the others. Polymerase binding to covalently closed relaxed SV40 DNA resulted in the induction of superhelicity. The simultaneous influence of the polymerase and histones on DNA topology were more than additive. Topological constraints on DNA induced by poly(ADP-ribose) polymerase were abolished by auto ADP-ribosylation of the enzyme. Benzamide, by inhibiting poly(ADP-ribosylation), reestablished the effect of the polymerase protein on DNA topology. Polymerase binding to in vitro-assembled core particle-like nucleosomes was also demonstrated.  相似文献   

15.
Here, we describe the latest developments on the mechanistic characterization of poly(ADP-ribose) polymerase (PARP) [EC 2.4.2.30], a DNA-dependent enzyme that catalyzes the synthesis of protein-bound ADP-ribose polymers in eucaryotic chromatin. A detailed kinetic analysis of the automodification reaction of PARP in the presence of nicked dsDNA indicates that protein-poly(ADP-ribosyl)ation probably occurs via a sequential mechanism since enzyme-bound ADP-ribose chains are not reaction intermediates. The multiple enzymatic activities catalyzed by PARP (initiation, elongation, branching and self-modification) are the subject of a very complex regulatory mechanism that may involve allosterism. For instance, while the NAD+ concentration determines the average ADP-ribose polymer size (polymerization reaction), the frequency of DNA strand breaks determines the total number of ADP-ribose chains synthesized (initiation reaction). A general discussion of some of the mechanisms that regulate these multiple catalytic activities of PARP is presented below.  相似文献   

16.
Previous studies have demonstrated that an increase in poly(ADP-ribose) polymerase activity could be closely related to DNA replication during liver regeneration and to DNA repair synthesis in different experimental systems. This relationship was further investigated by studying the time course of endogenous and total poly(ADP-ribose) polymerase activity in cultured rat hepatocytes stimulated by epidermal growth factor. This mitogen has been shown to stimulate DNA synthesis in liver cells both in vivo and in vitro. A 6-fold increase in endogenous activity was observed early after epidermal growth factor addition, just before DNA synthesis. A subsequent 4-fold increment in total enzyme activity, concomitant with DNA synthesis, was detected. Orotic acid, which has recently shown mitoinhibitory effect, abolished the epidermal-growth-factor-induced increase in endogenous and total poly(ADP-ribose) polymerase activity, as well as DNA synthesis. On the contrary, 3-aminobenzamide inhibitor of poly(ADP-ribose) polymerase completely suppressed the endogenous activity but only partially modified the increase in total catalytic level and the overall pattern of thymidine incorporation. Taken together, these data indicate that, in cultured hepatocytes, the induction of DNA synthesis is supported by an increased poly(ADP-ribose) polymerase activity.  相似文献   

17.
Structure and function of poly(ADP-ribose) polymerase   总被引:22,自引:0,他引:22  
Poly(ADP-ribose) polymerase (PARP) participates in the intricate network of systems developed by the eukaryotic cell to cope with the numerous environmental and endogenous genetoxic agents. Cloning of the PARP gene has allowed the development of genetic and molecular approaches to elucidate the structure and the function of this abundant and highly conserved enzyme. This article summarizes our present knowledge in this field.  相似文献   

18.
P I Bauer  A Hakam  E Kun 《FEBS letters》1986,195(1-2):331-338
Calf thymus and rat liver poly(ADP-ribose) polymerase enzymes, and the polymerase present in extracts of rat liver nuclei synthesize unstable mono-ADP-ribose protein adducts at 100 nM or lower NAD concentrations. The isolated enzyme-mono-ADP-ribose adduct hydrolyses to ADP-ribose and enzyme protein at pH values slightly above 7.0 indicating a continuous release of ADP-ribose from NAD through this enzyme-bound intermediate under physiological conditions. NH2OH at pH 7.0 hydrolyses the mono-ADP-ribose enzyme adduct. Desamino NAD and some other homologs at nanomolar concentrations act as 'forward' activators of the initiating mono-ADP-ribosylation reaction. These NAD analogs at micromolar concentrations do not affect polymer formation that takes place at micromolar NAD concentrations. Benzamides at nanomolar concentrations also activate mono-ADP-ribosylation of the enzyme, but at higher concentrations inhibit elongation at micromolar NAD as substrate. In nuclei, the enzyme molecule extensively auto-ADP-ribosylates itself, whereas histones are trans-ADP-ribosylated to a much lower extent. The unstable mono-ADP-ribose enzyme adduct represents an initiator intermediate in poly ADP-ribosylation.  相似文献   

19.
Yang WS  Kim JW  Lee JH  Choi BS  Joe CO 《FEBS letters》1999,449(1):33-35
The ability of poly(ADP-ribose)polymerase to bind damaged DNA was assessed by electrophoretic mobility shift assay. DNA binding domain of poly(ADP-ribose)polymerase (PARPDBD) binds to synthetic deoxyribonucleotide duplex 10-mer. However, the synthetic deoxyribonucleotide duplex containing cys-syn thymidine dimer which produces the unwinding of DNA helix structure lost its affinity to PARPDBD. It was shown that the binding of PARPDBD to the synthetic deoxyribonucleotide duplex was not affected by O6-Me-dG which causes only minor distortion of DNA helix structure. This study suggests that the stabilized DNA helix structure is important for poly(ADP-ribose)polymerase binding to DNA breaks, which are known to stimulate catalytic activity of poly(ADP-ribose)polymerase.  相似文献   

20.
The effects of the phagocyte-derived reactive oxidants hydrogen peroxide (H2O2) and hypochlorous acid (HOC1) on the activity of poly(ADP-ribose) polymerase (pADP RP), an enzyme involved in DNA repair, and on the induction and repair of DNA strand breaks in human mononuclear leukocytes (MNL) have been investigated in vitro. Exposure of MNL to reagent H2O2 was accompanied by DNA damage and activation of pADP RP. Addition of reagent HOCl (25 microM) was not associated with DNA strand breaks. However, when combined with 150 microM H2O2, HOCl potentiated H2O2-mediated DNA damage, and compromised the repair process. Furthermore, HOCl caused a dose-related decrease in the activity of pADP RP in both control and H2O2-exposed MNL. Interactions between the phagocyte-derived reactive oxidants H2O2 and HOCl are probably involved in the etiology of inflammation-related cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号