共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of several different types of antidepressant drugs on phosphoinositide hydrolysis by slices of rat cerebral cortex was investigated by prelabeling inositol phospholipids with [3H]inositol and then measuring the formation of [3H]inositol phosphates (a total fraction consisting of the mono-and poly-phosphates was collected) in the presence of 10 mM LiCl. All of the drugs tested (amitriptyline, trimipramine, mianserin, desipramine, tranylcypromine, and citalopram) inhibited NE-stimulated [3H]inositol phosphate formation. This inhibition appeared to be due to antagonism of 1-receptors. In addition to inhibiting the effects of NE, the tricyclic antidepressants themselves were able to stimulate [3H]inositol phosphate formation. This stimulation occurred at drug concentrations higher than that needed to inhibit stimulation by NE. Stimulatory effects of the antidepressants themselves were not blocked by the 1-antagonist, prazosin. An examination of the types of inositol phosphates formed revealed that formation of inositol monophosphate was stimulated, but that inostiol biphosphate production was decreased by tricyclic antidepressants compared to control. 相似文献
2.
Ethylamine, octopamine, tryptamine, and carbachol stimulate inositol phosphate accumulation in a dose-dependent way in rat cortical slices. Tyramine at 100 M has no effect. The major inositol phosphate that is accumulated following stimulation is the monophosphate. The effect of carbachol is blocked by atropine but not by cyproheptadine, phenoxybenzamine, haloperidol or propranolol. None of the antagonists tried, including atropine, had an effect on the stimulation caused by ethylamine, octopamine or tryptamine. 相似文献
3.
Interaction of cirazoline, an imidazoline derivative, with alpha 1-adrenoceptor coupled inositol phospholipid hydrolysis was characterized in rat brain cortical slices. Norepinephrine, a full alpha 1-agonist, and phenylephrine, a partial alpha 1-agonist, on inositol phospholipid hydrolysis were included for comparison. Norepinephrine produced a fourfold stimulation of inositol phospholipid hydrolysis, whereas cirazoline and phenylephrine caused only submaximal responses (40-60%) when compared with norepinephrine. The stimulation of inositol phospholipid hydrolysis by cirazoline was completely blocked by the alpha 1-adrenoceptor antagonist prazosin, but not by selective alpha 2- or beta-adrenoceptor antagonists. Furthermore, the norepinephrine dose-response curve was shifted to the right in the presence of cirazoline, without affecting the maximal response. These results suggest that cirazoline behaves as a partial agonist at brain alpha 1-adrenoceptors linked to inositol phospholipid hydrolysis. 相似文献
4.
The calcium and potassium ion dependency of the inositol phospholipid breakdown response to stimulatory agents has been investigated in rat cerebral cortical miniprisms. The calcium channel agonist BAY K-8644 (10 microM) potentiated the response to carbachol at 6 mM K+ when Ca2(+)-free, but not when 2.52 mM Ca2+ assay buffer was used. In Ca2(+)-free buffer, verapamil (10 microM) inhibited the response to carbachol at both 6 and 18 mM K+ but higher concentrations (30-300 microM) were needed when 2.52 mM Ca2+ was used. At these higher concentrations, however, verapamil inhibited the binding of 2 nM [3H]pirenzepine to muscarinic recognition sites. N-Methyl-D-Aspartate (NMDA, 100 microM) significantly reduced the basal phosphoinositide breakdown rate at 18 mM K+ at 1.3 mM Ca2+, but was without effect on the basal rate at other K+ and Ca2+ concentrations. In the presence of NMDA (100 microM) or quisqualate (100 microM), the responses to carbachol were reduced, the degree of reduction showing a complex dependency upon the assay K+ and Ca2+ concentrations used. These results indicate that the inositol phospholipid breakdown response to carbachol in cerebral cortical miniprisms can be modulated in a manner dependent upon the extracellular calcium and potassium concentrations used. 相似文献
5.
Astrocyte cultures prelabelled with [3H]inositol were exposed to arachidonic acid (AA) in the presence and absence of various agonists. AA alone evoked a dose-dependent increase in the accumulation of inositol phosphates (IP), an effect not secondary to eicosanoid synthesis and release but which was abolished by EGTA. Separation of the IP revealed that AA stimulated increases in inositol tris-, bis- and monophosphates. IP formation evoked by carbachol or norepinephrine was additive with AA, whereas IP formation by platelet activating factor (PAF) or ATP was non-additive with AA. These results suggest that AA released upon stimulation of astrocytes or other cells in the CNS could initiate and/or amplify intercellular signalling. 相似文献
6.
Michael F. Crouch Michael L. Roberts 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1985,844(2):149-157
Dispersed mouse and guinea-pig pancreatic acini were used to examine the effects of the inositol analogue, γ-hexachlorocyclohexane (lindane) on agonist-stimulated amylase secretion. Secretion from mouse acini in response to carbachol and cholecystokinin octapeptide (CCK-8) was reduced by lindane. Similarly, amylase release from guinea-pig acini stimulated by carbachol was abolished by lindane. These acini, however, still remained responsive to dibutyryl-cAMP with only a slightly diminished secretion to this agent. Inositol phospholipid synthesis and hydrolysis was stimulated in mouse acini by both carbachol and CCK-8. Although hydrolysis of these lipids in response to CCK-8 was reduced by only 18%, stimulation of inositol phospholipid synthesis by either agonist was abolished by lindane. Dose-response curves for inositol phospholipid synthesis stimulated by carbachol and CCK-8 in mouse acini were biphasic and superimposable with those of amylase secretion. In contrast, the dose-response curve for phosphoinositide hydrolysis was sigmoid and clearly separable from that of synthesis. Reducing the external Ca2+ concentration caused the dose-response curves for carbachol- and CCK-8-induced inositol phospholipid synthesis to be displaced to the right, as has been observed for amylase secretion. A23187 was also found to induce amylase secretion and inositol phospholipid synthesis, and both of these responses were inhibited by lindane. Amylase secretion and inositol phospholipid synthesis may, therefore, be closely related events in the exocrine pancreas. Lindane may provide a valuable tool with which to determine the role of inositol phospholipid metabolism in stimulus-response coupling. 相似文献
7.
At low concentrations of Mg2+, incorporation of 32P from [gamma-32P]ATP into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) in plasma membranes isolated from human polymorphonuclear leucocytes was enhanced 2-4-fold by the polyamines spermidine and spermine. Polyamines had no effects on inositol phospholipid phosphorylation at high concentrations of Mg2+. At 1 mM-Mg2+, [32P]PIP2 synthesis was maximally enhanced by 2 mM-spermine and 5 mM-spermidine, whereas putrescine only slightly enhanced synthesis. Spermine decreased the EC50 (concn. for half-maximal activity) for Mg2+ in [32P]PIP2 synthesis from 5 mM to 0.5 mM. Spermine did not modulate the Km for ATP for [32P]PIP or [32P]PIP2 synthesis. Spermine also decreased the EC50 for PI in [32P]PIP synthesis. In contrast, spermine elevated the apparent Vmax, without affecting the EC50 for PIP, for [32P]PIP2 synthesis. Spermine and spermidine also inhibited the hydrolysis of [32P]PIP2 by phosphomonoesterase activity. Therefore polyamines appear to activate inositol phospholipid kinases by eliminating the requirements for super-physiological concentrations of Mg2+. Polyamine-mediated inhibition of polyphosphoinositide hydrolysis would serve to potentiate further their abilities to promote the accumulation of polyphosphoinositides in biological systems. 相似文献
8.
Lithium inhibits muscarinic-receptor-stimulated inositol tetrakisphosphate accumulation in rat cerebral cortex. 总被引:12,自引:4,他引:12 下载免费PDF全文
The effects of Li+ on carbachol-stimulated phosphoinositide metabolism were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. The muscarinic agonist carbachol evoked an enhanced steady-state accumulation of [3H]inositol monophosphate ([3H]InsP1), [3H]inositol bisphosphate ([3H]InsP2), [3H]inositol 1,3,4-trisphosphate ([3H]Ins(1,3,4)P3), [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and [3H]inositol tetrakisphosphate ([3H]InsP4). Li+ (5 mM), after a 10 min lag, severely attenuated carbachol-stimulated [3H]InsP4 accumulation while simultaneously potentiating accumulation of both [3H]InsP1 and [3H]InsP2 and, at least initially, of [3H]Ins(1,3,4)P3. These data are consistent with inhibition of inositol mono-, bis- and 1,3,4-tris-phosphate phosphatases to different degrees by Li+ in brain, but are not considered to be completely accounted for in this way. Potential direct and indirect mechanisms of the inhibitory action of Li+ on [3H]InsP4 accumulation are considered. The present results stress the complex action of Li+ on cerebral inositol metabolism and indicate that more complex mechanisms than are yet evident may regulate this process. 相似文献
9.
The hydrolysis of inositol [32P]trisphosphate (IP3) and inositol [32P]bisphosphate (IP2) has been examined in subcellular fractions of rat liver. IP3 was degraded by an enzyme located in the plasma membrane which did not degrade IP2. Cytosolic fractions were found to degrade both IP3 and IP3. The IP3 phosphatase activity of liver plasma membranes displayed a neutral pH optimum, was Mg2+ dependent and was not inhibited by high concentrations of Li+. Half-maximal activity of the enzymes hydrolysing IP3 and IP2 was obtained with substrate concentrations in the range 1–2μM. The significance of these observations to the proposed Ca2+ -mobilizing role of IP3 is discussed. 相似文献
10.
11.
The present studies examined the inhibitory effect of veratridine (a Na+ channel activator) on carbachol (a cholinergic agonist) stimulated inositol 1,3,4,5-tetrakisphosphate accumulation in rat brain cortical slices. Veratridine inhibited carbachol stimulation of inositol 1,3,4,5-tetrakisphosphate formation (after a delay of about 30 seconds) at 60 or 120 seconds when there was little inhibition of inositol 1,4,5 trisphophate accumulation. The inhibitory effect of veratridine on carbachol stimulated inositol 1,3,4,5-tetrakisphosphate accumulation was abolished in the presence of ouabain or tetrodotoxin but was unaffected in low calcium conditions. Veratridine reduced the total ATP content and this effect was abolished by tetrodotoxin. The inhibitory effect of 10 but not 30 M veratridine on inositol 1,3,4,5-tetrakisphosphate accumulation in the presence of carbachol was reversed by the presence of exogenous 8-bromo cyclic AMP or forskolin which activates adenylylcyclase. However, the decrease in brain slice ATP seen in the presence of veratridine was unaffected by forskolin. Our results are compatible with the hypothesis that veratridine inhibition of carbachol-stimulated inositol 1,3,4,5-tetrakisphosphate formation is due to depletion of ATP at the site of Ins 1,3,4,5-P4 formation from Ins 1,4,5-P3.Abbreviations used Ins 1,4,5-P3
inositol 1,4,5 trisphosphate
- Ins 1,3,4,5-P4
inositol 1,3,4,5-tetrakisphosphate
- PMA
phorbol 12-myristate 13-acetate 相似文献
12.
The effects of ouabain and monensin upon basal and carbachol-stimulated inositol phospholipid breakdown in rat cerebral cortical miniprisms have been investigated. Basal inositol phospholipid breakdown was increased by both compounds at both 6 and 18 mM K+. Enhancement of the carbachol response at 6 mM, but not at 18 mM K+, was found with high concentrations of ouabain. On the other hand, monensin blocked the response to carbachol. Monensin also inhibited the specific binding of [3H]pirenzepine to cerebral cortical membranes, but this was found only at concentrations higher than required to affect the basal and carbachol-stimulated inositol phospholipid breakdown responses. Ouabain did not affect [3H] pirenzepine binding at any of the concentrations tested (6-600 muM). It is concluded that agents that increase the intracellular sodium ion concentration affect the inositol phospholipid breakdown response to carbachol, but that the modulation can be both to potentiate and to inhibit the response. 相似文献
13.
Effects of ginsenosides on carbachol-stimulated formation of inositol phosphates in rat cortical cell cultures 总被引:2,自引:0,他引:2
We examined the effect of ginseng total saponins (GTS) on phosphoinositide metabolism stimulated by activation of muscarinic receptor using rat cortical cultures. Carbachol stimulated formation of [3H]inositol phosphates ([3H]InsPs) by 3.3-fold over basal level in [3H]inositol-prelabeled cells. Pretreatment of GTS inhibited formation of [3H]InsPs evoked by carbachol by 70%–90%. Addition of GTS alone had no effect on the basal formation of [3H]InsPs. The inhibitory effect of the GTS on carbachol-stimulated formation of [3H]InsPs was dose- and time-dependent. IC50 was 6.0 ± 2.8 g/ml. We also examined the effect of GTS on [3H]InsP1, [3H]InsP2, or [3H]InsP3 formation evoked by carbachol. Although GTS had no effect on the basal [3H]InsP1, [3H]InsP2, or [3H]InsP3 formation, pretreatment of GTS inhibited [3H]InsP1, [3H]InsP2, or [3H]InsP3 formation evoked by carbachol, respectively. Addition of individual ginsenosides such as ginsenoside Rb1, Rc, Rd, Re, or Rg2 had no effect on the basal formation of [3H]InsPs, whereas pretreatment of ginsenoside Rb2, Rc, Rd, Re, Rf, Rg1 or Rg2 inhibited formation of [3H]InsPs evoked by carbachol by 79%–89%. The results suggest that the inhibitory effect of GTS and its individual ginsenosides on carbachol-stimulated formation of [3H]InsPs in cortical neurons could be one pharmacological action of Panax ginseng. 相似文献
14.
M. F. Pediconi A. M. Roccamo de Fernández F. J. Barrantes 《Neurochemical research》1993,18(5):565-572
The distribution and down-regulation of the muscarinic acetylcholine receptor (mAChR) were studied in dissociated cells from right (RCC) and left (LCC) cerebral cortex. For this purpose [3H]quinuclidinyl benzilate (QNB) and [3H]pirenzepine (Pz), two muscarinic antagonists, were used. The mAChR binding sites detected with [3H]QNB were asymmetrically distributed between the two hemispheres, the majority being found in the RCC. Asymmetry was also evident in the distribution of the mAChR subtypes (M1 and M2) detected with [3H]Pz. Under basal conditions the RCC had roughly 50% more M1 subtype than the LCC. The pharmacological and kinetic parameters were similar for both antagonists in RCC and LCC, indicating that the observed lateralization was due to a different density of the receptor rather than to different kinetics of binding of the two radioligands. After sustained stimulation with the agonist carbamoylcholine, the receptor sites detected with [3H]Pz, i.e. the M1 subtype of mAChR, decreased at a higher rate in the RCC (44%) than in the LCC (25% of controls), demonstrating that the down-regulation process is more active in the right than in the left cortex, and thus implying that there is better coupling between the stimulated mAChR and its effector system in the former. 相似文献
15.
Inositol phosphate glycan pseudotetrasaccharides consisting of man-(1-6)-man-(1-4)-glcN-(,β1-6)-myo-inositol-1,2-cyclic phosphate possessing a sulfate group at either O-6 (compounds 3,β) or O-2 (compounds 4,β) of the terminal mannose have been prepared. Compound 4 was able to stimulate lipogenesis in native rat adipocytes to 78% of the maximal insulin response (MIR) with an EC50 of 1.1 μM. The other compounds exhibited lower maximal stimulations (47–63% MIR) and higher EC50 values (9.5–10.6 μM). 相似文献
16.
17.
High affinity Ins(1,4,5)P3-binding sites of permeabilized hepatocytes are probably the ligand recognition sites of the receptors that mediate the effects of Ins91,4,5)P3 on intracellular Ca2+ mobilization. We have now solubilized these sites from rat liver membranes in the zwitterionic detergent, CHAPS, and shown that the solubilized bind Ins(1,4,5)P3 with an affinity (Kd = 7.26 ± 0.52 nM, Hill coefficient H = 1.05 ± 0.06) similar to that of the sites in native membranes (Kd = 6.02 ± 0.02). ATP and a range of inositol phosphates (Ins(2,4,5)P3 Ins(4,5)P2, and inositol 1,4,5-trisphosphorothioate) also bound with similar affinities to the native and solubilized sites. Solubilization of the liver InsP3 receptor will allow its further characterization, purification, and comparison of its properties with those of InsP3 receptors already purified from cerebellum and smooth muscle. 相似文献
18.
Alan Musgrave Hilda Kuin Marjan Jongen Piet de Wildt Frank Schuring Hans Klerk Herman van den Ende 《Planta》1992,186(3):442-449
Alcohols induce mating-structure activation in Chlamydomonas eugametos gametes. From the effect of ethanol on the 32P-labelling of polyphosphoinositides, we conclude that the synthesis of these lipids is stimulated. Biologically inactive concentrations of ethanol (<6%) had no effect on synthesis, but 6–8% ethanol stimulated synthesis for upto 60 min. The 32P incorporated into polyphosphoinositides and phosphatidic acid during ethanol treatment was readily chased out when 1 mM unlabelled Na3PO4 was added. Using a binding assay for inositol 1,4,5-trisphosphate, we show that the production of this phospholipid constituent is dramatically increased after ethanol treatment. This effect, coupled to a rise in intracellular calcium concentration, could explain gamete activation. The significance of these results in explaining other ethanol-induced phenomena in algae is discussed.Abbreviations Ins(1,4,5)P3
inositol 1,4,5-trisphosphate
- PtdA
phosphatidic acid
- PtdIns
phosphatidylinositol
- PtdIns(4)P
phosphatidylinositol 4-phosphate
- PtdIns(4,5)P2
phosphatidylinositol 4,5-bisphosphate
To whom correspondence should be addressedWe thank Dr. P. van Haastert (Biochemistry, University of Groningen, The Netherlands) and his colleagues for introducing us to their Ins(1,4,5)P3 assay, and Ben ten Brink (Molecular Cell Biology, University of Amsterdam, The Netherlands) for information about contractile vacuoles. We also thank Bas Nagelkerken, Marcel van der Vaart, Pieter van der Schoor, Gyuri Fenyvesi and Susan Kenter for their help. 相似文献
19.
Neville N. Osborne 《Neurochemical research》1988,13(2):105-111
The ability of tricyclic antidepressants, monoamine oxidase inhibitors, mianserin and ouabain to stimulate hydrolysis of inositol phosphates was examined in rat cerebral cortex slices using a direct assay which involves labelling with [3H]inositol and assaying [3H]inositol phosphates in the presence of lithium. Desimipramine, imipramine, chlorimipramine, mianserin, and ouabain stimulated [3H]inositol phosphate accumulation in a concentration-dependent manner. The monoamine oxidase inhibitors, pargyline and nialamide were without effect. The stimulation of [3H]inositol phosphate accumulation caused by the various substances was not blocked by the antagonists prazosin, ketanserin, atropine, or mepyramine. In contrast, the antagonists prazosin, ketanserin, atropine and mepyramine selectively blocked stimulation of [3H]inositol phosphate accumulation caused by noradrenaline, serotonin, carbachol and histamine respectively. When desimipramine was substituted for lithium in the assay procedure, carbachol was ineffectual in stimulating [3H]inositol phosphate accumulation. In these experiments the control (unstimulated) values were much higher than in the normal (when lithium is present) assay procedure. Desimipramine is quite effective in stimulating [3H]inositol phosphate accumulation either in the presence or absence of lithium in the incubation medium. This is not the case for carbachol where it was essential to have lithium in the incubation medium in order to obtain a stimulation of [3H]inositol phosphate accumulation. Furthermore, in the case of carbachol stimulation, most of the radioactivity was associated with a peak corresponding to inositol monophosphate, while for desimipramine stimulation two clear peaks corresponding to inositol monophosphate and inositol bisphosphate were apparent. 相似文献
20.
The effect of dopamine receptor stimulation on the accumulation of labelled inositol phosphates in rat striatal slices under basal and stimulated conditions was examined following preincubation with [3H]inositol. Incubation of striatal slices with the selective D-1 agonist SKF 38393 or the selective D-2 agonist LY 171555 for 5 or 30 min did not affect the basal accumulation of labelled inositol mono-, bis-, tris-, and tetrakisphosphate. Resolution by HPLC of inositol trisphosphate into inositol-1,3,4-tris-phosphate and inositol-1,4,5-trisphosphate isomers revealed that under basal conditions dopamine did not influence the accumulation of inositol-1,4,5-trisphosphate. Depolarisation evoked by KCl, or addition of the muscarinic receptor agonist carbachol, produced a marked increase in the accumulation of labelled inositol phosphates in both the presence and absence of lithium. Addition of dopamine did not reduce the ability of KCl or carbachol to increase inositol phospholipid hydrolysis. In the presence of lithium, dopamine (100 microM) enhanced KCl-stimulated inositol phospholipid hydrolysis, but this effect appears to be mediated by alpha 1 adrenoceptors because it was blocked by prazosin. SKF 38393 (10 microM) or LY 171555 (10 microM) also did not affect carbachol-stimulated inositol phospholipid hydrolysis. These data, in contrast to recent reports, suggest that striatal dopamine receptors do not appear to be linked to inositol phospholipid hydrolysis. 相似文献