首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woody extract-derived hemicellulosic hydrolysate, which was obtained from dissolving pulp manufacturing, was utilized as feedstock for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] in engineered Escherichia coli. The hydrolysate was composed of mainly xylose and galactose, and contained impurities mainly acetate, which was found to inhibit the polymer synthesis rather than the cell growth. Thus, acetate and other impurities were removed through active charcoal and ion-exchange columns. Using the purified hydrolysate, P(LA-co-3HB) was successfully produced (cell dry weight 8.6 g/L, polymer concentration 5.4 g/L, LA fraction 5.5 mol%, polymer content 62.4%), the amount of which was comparable to that obtained using reagent grade xylose and galactose. Therefore, the hydrolysate from woody extract is considered as an abundant, inexpensive and efficient feedstock applicable to consolidated process for P(LA-co-3HB) production, when the removal of acetic acid was satisfactorily accomplished.  相似文献   

2.
Several recombinant Escherichia coli strains harboring the Alcaligenes eutrophus polyhydroxyalkanoate biosynthesis genes were used to produce poly(3-hydroxybutyrate), PHB, from xylose. By flask culture of TG1 (pSYL107) in a defined medium containing 20?g/l xylose, PHB concentration of 1.7?g/l was obtained. Supplementation of a small amount of cotton seed hydrolysate or soybean hydrolysate could enhance PHB production by more than two fold. The PHB concentration, PHB content, and PHB yield on xylose obtained by supplementing soybean hydrolysate were 4.4?g/l, 73.9%, and 0.226?g PHB/g xylose, respectively.  相似文献   

3.
P[(R)-lactate-co-(R)-3-hydroxybutyrate] [P(LA-co-3HB)] was produced in engineered Escherichia coli using lignocellulose-derived hydrolysates from Miscanthus × giganteus (hybrid Miscanthus) and rice straw. Hybrid Miscanthus-derived hydrolysate exhibited no negative effect on polymer production, LA fraction, and molecular weight of the polymer, whereas rice straw-derived hydrolysate reduced LA fraction. These results revealed that P(LA-co-3HB) was successfully produced from hybrid Miscanthus-derived sugars.  相似文献   

4.
Metabolically engineered Escherichia coli strains were constructed to effectively produce novel glycolate-containing biopolymers from glucose. First, the glyoxylate bypass pathway and glyoxylate reductase were engineered such as to generate glycolate. Second, glycolate and lactate were activated by the Megasphaera elsdenii propionyl-CoA transferase to synthesize glycolyl-CoA and lactyl-CoA, respectively. Third, β-ketothiolase and acetoacetyl-CoA reductase from Ralstonia eutropha were introduced to synthesize 3-hydroxybutyryl-CoA from acetyl-CoA. At last, the Ser325Thr/Gln481Lys mutant of polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp. 61–3 was over-expressed to polymerize glycolyl-CoA, lactyl-CoA and 3-hydroxybutyryl-CoA to produce poly(glycolate-co-lactate-co-3-hydroxybutyrate). The recombinant E. coli was able to accumulate the novel terpolymer with a titer of 3.90 g/l in shake flask cultures. The structure of the resulting polymer was chemically characterized by proton NMR analysis. Assessment of thermal and mechanical properties demonstrated that the produced terpolymer possessed decreased crystallinity and improved toughness, in comparison to poly(3-hydroxybutyrate) homopolymer. This is the first study reporting efficient microbial production of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose.  相似文献   

5.
对重组大肠杆菌JH16利用木糖产高纯度的三一乳酸进行研究。通过无氧管驯化EscherwhiacdiJH12菌株得到E.coliJH16,驯化后的菌株茵体浓度提高了31%,乙酸积累减少了43%;在摇瓶中考察不同Mg2+浓度对EcoliJHl6产三一乳酸的影响,确定最适Mg2+质量浓度为0.25g/L;EcoEJH16以60g/L木糖为C源,在7L全自动发酵罐中添加0.25g/LMg2+,乳酸积累量提高了18%,达38.18g/L,乳酸纯度高达95%;E.coliJH16在30g/L木糖和30g/L葡萄糖混合C源中,优先利用葡萄糖,当葡萄糖质量浓度低于1.56g/L后,菌体开始利用木糖进行乳酸发酵,最终得到39g/L乳酸。  相似文献   

6.
A recombinant Escherichia coli strain XL1-Blue harboring a stable high-copy-number plasmid pSYL107 containing the Alcaligenes eutrophus polyhydroxyalkanoate biosynthesis genes and the Escherichia coli ftsZ gene was employed for the production of poly(3-hydroxybutyrate) (PHB) by fed-batch culture in a defined medium. Suppression of filamentation by overexpressing the cell division protein FtsZ allowed production of PHB to a high concentration (77 g/L) with high productivity (2 g/L/h) in a defined medium, which was not possible with the recombinant E. coli that underwent filamentation. Further optimization of fed-batch culture condition resulted in PHB concentration of 104 g/L in a defined medium, which was the highest value reported to date by employing recombinant E. coli.  相似文献   

7.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

8.
Escherichia coli W3110 was previously engineered to co-utilize glucose and xylose by replacing the wild-type crp gene with a crp* mutant encoding a cAMP-independent CRP variant (Cirino et al., 2006 [Cirino, P.C., Chin, J.W., Ingram, L.O., 2006. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol. Bioeng. 95, 1167-1176.]). Subsequent deletion of the xylB gene (encoding xylulokinase) and expression of xylose reductase from Candida boidinii (CbXR) resulted in a strain which produces xylitol from glucose-xylose mixtures. In this study we examine the contributions of the native E. coli xylose transporters (the d-xylose/proton symporter XylE and the d-xylose ABC transporter XylFGH) and CRP* to xylitol production in the presence of glucose and xylose. The final batch xylitol titer with strain PC09 (Delta xylB and crp*) is reduced by 40% upon deletion of xylG and by 60% upon deletion of both xyl transporters. Xylitol production by the wild-type strain (W3110) expressing CbXR is not reduced when xylE and xylG are deleted, demonstrating tight regulation of the xylose transporters by CRP and revealing significant secondary xylose transport. Finally, plasmid expression of XylE or XylFGH with CbXR in PC07 (Delta xylB and wild-type crp) growing on glucose results in xylitol titers similar to that achieved with PC09 and provides an alternative strategy to the use of CRP*.  相似文献   

9.
Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.  相似文献   

10.
以大肠杆菌为宿主,构建了以葡萄糖和木糖为底物获得乙醇酸、乳酸和3-羟基丁酸共聚酯的生物合成途径,包括过表达塔格糖-3-差向异构酶、核酮糖激酶、醛缩酶、醛脱氢酶、丙酰辅酶A转移酶、β-酮硫解酶、乙酰乙酰辅酶A还原酶和聚合酶等。在此基础上,表达聚羟基脂肪酸酯颗粒结合蛋白,提高了聚合物的合成,重组菌的细胞干重达到3.73g/L,含有38.72wt%的共聚酯。采用混菌共培养策略,实现以葡萄糖和木糖混合物为底物合成共聚酯,摇瓶实验中细胞干重达到4.01g/L,含有21.54wt%的聚合物。文中提供了一种以葡萄糖和木糖混合物为碳源合成聚合物的方法,为下一步纤维素水解物的有效利用提供了参考。  相似文献   

11.
12.
Recombinant Escherichia colistrains harboring the genes from Alcaligenes eutrophusfor polyhydroxyalkanoate biosyn-thesis were constructed and compared for their ability to synthesize poly(3-hydroxybutyrate) in a defined medium with whey as the sole carbon source. The highest PHB concentration and PHB content obtained were 5.2 g/L and 81% of dry cell weight, respectively.  相似文献   

13.
A quantitatively repeatable protocol was developed for poly(3-hydroxybutyrate) (PHB) production by Escherichia coli XL1-Blue (pSYL107). Two constant-glucose fed-batch fermentations of duration 25 h were carried out in a 5-L bioreactor, with the measured oxygen volumetric mass-transfer coefficient (k(L)a) held constant at 1.1 min(-1). All major consumption and production rates were quantified. The intracellular concentration profiles of acetyl-CoA (300 to 600 microg x g RCM(-1)) and 3-hydroxybutyryl-CoA (20 to 40 microg x g RCM(-1)) were measured, which is the first time this has been performed for E. coli during PHB production. The kinetics of PHB production were examined and likely ranges were established for polyhydroxyalkanoate (PHA) enzyme activity and the concentration of pathway metabolites. These measured and estimated values are quite similar to the available literature estimates for the native PHB producer Ralstonia eutropha. Metabolic control analysis performed on the PHB metabolic pathway showed that the PHB flux was highly sensitive to acetyl-CoA/CoA ratio (response coefficient 0.8), total acetyl-CoA + CoA concentration (response coefficient 0.7), and pH (response coefficient -1.25). It was less sensitive (response coefficient 0.25) to NADPH/NADP ratio. NADP(H) concentration (NADPH + NADP) had a negligible effect. No single enzyme had a dominant flux control coefficient under the experimental conditions examined (0.6, 0.25, and 0.15 for 3-ketoacyl-CoA reductase, PHA synthase, and 3-ketothiolase, respectively). In conjunction with metabolic flux analysis, kinetic analysis was used to provide a metabolic explanation for the observed fermentation profile. In particular, the rapid onset of PHB production was shown to be caused by oxygen limitation, which initiated a cascade of secondary metabolic events, including cessation of TCA cycle flux and an increase in acetyl-CoA/CoA ratio.  相似文献   

14.
Recombinant Escherichia coli strains harboring heterologous polyhydroxyalkanoate (PHA) biosynthesis genes were shown to accumulate unusually large amounts of PHA. In the present study, integrated cellular responses of metabolically engineered E. coli to the accumulation of poly(3-hydroxybutyrate) (PHB) in the early stationary phase were analyzed at the protein level by two-dimensional gel electrophoresis. Out of 20 proteins showing altered expression levels with the accumulation of PHB, 13 proteins were identified with the aid of mass spectrometry. Three heat shock proteins, GroEL, GroES, and DnaK, were significantly up-regulated in PHB-accumulating cells. Proteins which play essential roles in protein biosynthesis were unfavorably influenced by the accumulation of PHB. Cellular demand for the large amount of acetyl coenzyme A and NADPH for the PHB biosynthesis resulted in the increased synthesis of two enzymes of the glycolytic pathway and one enzyme of the Entner-Doudoroff pathway. The expression of the yfiD gene encoding a 14.3-kDa protein, which is known to be produced at low pH, was greatly induced with the accumulation of PHB. Therefore, it could be concluded that the accumulation of PHB in E. coli acted as a stress on the cells, which reduced the cells' ability to synthesize proteins and induced the expression of various protective proteins.  相似文献   

15.
A recombinant E. coli strain (K24K) was constructed and evaluated for poly(3-hydroxybutyrate) (PHB) production from whey and corn steep liquor as main carbon and nitrogen sources. This strain bears the pha biosynthetic genes from Azotobacter sp. strain FA8 expressed from a T5 promoter under the control of the lactose operator. K24K does not produce the lactose repressor, ensuring constitutive expression of genes involved in lactose transport and utilization. PHB was efficiently produced by the recombinant strain grown aerobically in fed-batch cultures in a laboratory scale bioreactor on a semisynthetic medium supplemented with the agroindustrial by-products. After 24 h, cells accumulated PHB to 72.9% of their cell dry weight, reaching a volumetric productivity of 2.13 g PHB per liter per hour. Physical analysis of PHB recovered from the recombinants showed that its molecular weight was similar to that of PHB produced by Azotobacter sp. strain FA8 and higher than that of the polymer from Cupriavidus necator and that its glass transition temperature was approximately 20 degrees C higher than those of PHBs from the natural producer strains.  相似文献   

16.
The metabolic network of Escherichia coli was constructed and was used to simulate the distribution of metabolic fluxes in wild-type E. coli and recombinant E. coli producing poly(3-hydroxybutyrate) [P(3HB)]. The flux of acetyl-CoA into the tricarboxylic acid (TCA) cycle, which competes with the P(3HB) biosynthesis pathway, decreased significantly during P(3HB) production. It was notable to find from in silico analysis that the Entner-Doudoroff (ED) pathway flux increased significantly under P(3HB)-accumulating conditions. To prove the role of ED pathway on P(3HB) production, a mutant E. coli strain, KEDA, which is defective in the activity of 2-keto-3-deoxy-6-phosphogluconate aldolase (Eda), was examined as a host strain for the production of P(3HB) by transforming it with pJC4, a plasmid containing the Alcaligenes latus P(3HB) biosynthesis operon. The P(3HB) content obtained with KEDA (pJC4) was lower than that obtained with its parent strain KS272 (pJC4). The reduced P(3HB) biosynthetic capacity of KEDA (pJC4) could be restored by the co-expression of the E. coli eda gene, which proves the important role of ED pathway on P(3HB) synthesis in recombinant E. coli as predicted by metabolic flux analysis.  相似文献   

17.
In order to evaluate the mechanical properties of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] and its correlation with the LA fraction, P(LA-co-3HB)s with a variety of LA fractions were prepared using recombinant Escherichia coli expressing the LA-polymerizing enzyme and monomer supplying enzymes. The LA-overproducing mutant E. coli JW0885 with a pflA gene disruption was used for the LA-enriched polymer production. The LA fraction was also varied by jar-fermentor based fine-regulation of the anaerobic status of the culture conditions, resulting in LA fractions ranging from 4 to 47 mol%. In contrary to the opaque P(3HB) film, the copolymer films attained semitransparency depending on the LA fraction. Young's modulus values of the P(LA-co-3HB)s (from 148 to 905 MPa) were lower than those of poly(lactic acid) (PLA) (1020 MPa) and P(3HB) (1079 MPa). In addition, the value of elongation at break of the copolymer with 29 mol% LA reached 150%. In conclusion, P(LA-co-3HB)s were found to be a comparatively pliable and flexible material, differing from both of the rigid homopolymers.  相似文献   

18.
19.
Polyhydroxyalkanoates (PHA) are intracellularly accumulated as inclusion bodies. Due to the limitation of the cell size, PHA accumulation is also limited. To solve this problem, Escherichia coli was enlarged by over-expression of sulA gene to inhibit the cell division FtsZ ring assembly, leading to the formation of filamentary E. coli that have larger internal space for PHA accumulation compared with rod shape E. coli. As a result, more than 100% increases on poly(3-hydroxybutyrate) (PHB) contents and cell dry weights (CDW) were achieved compared with its control strain under same conditions. The enlarged cell strategy was applied to the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) or P(3HB-co-4HB) by sad, gabD, essential genes ispH and folK knockout E. coli harboring two addictives and thus stable plasmids consisting of P(3HB-co-4HB) producing genes, including phaCAB operon, orfZ, 4hbD, sucD, essential genes ispH and folK as well as the sulA. The so constructed E. coli grew in glucose to form filamentary shapes with an improved P(3HB-co-4HB) accumulation around 10% more than its control strain without addition of 4HB precursor, reaching over 78% P(3HB-co-4HB) in CDW. Importantly, the shape changing E. coli was able to precipitate after 20 min stillstand. Finally, the filamentary recombinant E. coli was not only able to produce more P(3HB-co-4HB) from glucose but also allow convenient downstream separation from the fermentation broth.  相似文献   

20.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号